The disappearance of ultrasound contrast agents after disruption can provide useful information on their environment. However, in vivo acoustical imaging of this transient phenomenon, which has a duration on the order of milliseconds, requires high frame rates that are unattainable by conventional ultrasound scanners. In this article, ultrafast imaging is applied to microbubble tracking using a 128-element linear array and an elastography scanner. Contrast agents flowing in a wall-less tissue phantom are insonified with a high-intensity disruption pulse followed by a series of plane waves emitted at a 5 kHz PRF.