Advertisement
Review| Volume 49, ISSUE 5, P1049-1057, May 2023

Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis

      Thrombosis in cardiovascular disease is an urgent global issue, but treatment progress is limited by the risks of current antithrombotic approaches. The cavitation effect in ultrasound-mediated thrombolysis offers a promising mechanical alternative for clot lysis. Further addition of microbubble contrast agents introduces artificial cavitation nuclei that can enhance the mechanical disruption induced by ultrasound. Recent studies have proposed sub-micron particles as novel sonothrombolysis agents with increased spatial specificity, safety and stability for thrombus disruption. In this article, the applications of different sub-micron particles for sonothrombolysis are discussed. Also reviewed are in vitro and in vivo studies that apply these particles as cavitation agents and as adjuvants to thrombolytic drugs. Finally, perspectives on future developments in sub-micron agents for cavitation-enhanced sonothrombolysis are shared.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roth GA
        • Mensah GA
        • Johnson CO
        • Addolorato G
        • Ammirati E
        • Baddour LM
        • et al.
        Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 Study.
        J Am Coll Cardiol. 2020; 76: 2982-3021
        • Raskob GE
        • Angchaisuksiri P
        • Blanco AN
        • Buller H
        • Gallus A
        • Hunt BJ
        • et al.
        Thrombosis.
        Arterioscler Thromb Vasc Biol. 2014; 34: 2363-2371
        • Deitelzweig SB
        • Johnson BH
        • Lin J
        • Schulman KL.
        Prevalence of clinical venous thromboembolism in the USA: current trends and future projections.
        Am J Hematol. 2011; 86: 217-220
        • Mackman N.
        Triggers, targets and treatments for thrombosis.
        Nature. 2008; 451: 914-918
        • Koupenova M
        • Kehrel BE
        • Corkrey HA
        • Freedman JE.
        Thrombosis and platelets: an update.
        Eur Heart J. 2017; 38: 785-791
        • Meadows TA
        • Bhatt DL.
        Clinical aspects of platelet inhibitors and thrombus formation.
        Circ Res. 2007; 100: 1261-1275
        • Stone J
        • Hangge P
        • Albadawi H
        • Wallace A
        • Shamoun F
        • Knuttien MG
        • et al.
        Deep vein thrombosis: pathogenesis, diagnosis, and medical management.
        Cardiovasc Diagn Ther. 2017; 7: S276-S284
        • Kluft C
        • Sidelmann JJ
        • Gram JB.
        Assessing safety of thrombolytic therapy.
        Semin Thromb Hemost. 2017; 43: 300-310
        • Cheung KS
        • Leung WK.
        Gastrointestinal bleeding in patients on novel oral anticoagulants: Risk, prevention and management.
        World J Gastroenterol. 2017; 23: 1954-1963
        • Nathan AS
        • Sen S
        • Yeh RW.
        The risk of bleeding with the use of antiplatelet agents for the treatment of cardiovascular disease.
        Expert Opin Drug Saf. 2017; 16: 561-572
        • Seet RCS
        • Rabinstein AA.
        Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions.
        Cerebrovasc Dis. 2012; 34: 106-114
        • Fleck D
        • Albadawi H
        • Shamoun F
        • Knuttinen G
        • Naidu S
        • Oklu R.
        Catheter-directed thrombolysis of deep vein thrombosis: literature review and practice considerations.
        Cardiovasc Diagn Ther. 2017; 7: S228-S237
        • Kunitada S
        • FitzGerald GA
        • Fitzgerald DJ.
        Inhibition of clot lysis and decreased binding of tissue-type plasminogen activator as a consequence of clot retraction.
        Blood. 1992; 79: 1420-1427
        • Risman RA
        • Abdelhamid A
        • Weisel JW
        • Bannish BE
        • Tutwiler V.
        Effects of clot contraction on clot degradation: a mathematical and experimental approach.
        Biophys J. 2022; 121: 3271-3285
        • Hobohm L
        • Schmidt FP
        • Gori T
        • Schmidtmann I
        • Barco S
        • Münzel T
        • et al.
        In-hospital outcomes of catheter-directed thrombolysis in patients with pulmonary embolism.
        Eur Heart J Acute Cardiovasc Care. 2021; 10: 258-264
        • Behme D
        • Gondecki L
        • Fiethen S
        • Kowoll A
        • Mpotsaris A
        • Weber W.
        Complications of mechanical thrombectomy for acute ischemic stroke—a retrospective single-center study of 176 consecutive cases.
        Neuroradiology. 2014; 56: 467-476
        • Murphy KD.
        Mechanical thrombectomy for DVT.
        Tech Vasc Interv Radiol. 2004; 7: 79-85
        • Trübestein G
        • Stumpff U
        • Sobbe A.
        Thrombolysis through ultrasound.
        Verhandlungen Dtsch Ges Für Inn Med. 1975; 81: 896-898
        • Bader KB
        • Bouchoux G
        • Holland CK
        Sonothrombolysis.
        Adv Exp Med Biol. 2016; 880: 339
        • Porter TR
        • Xie F
        Ultrasound, microbubbles, and thrombolysis.
        Prog Cardiovasc Dis. 2001; 44: 101-110
        • Goel L
        • Jiang X.
        Advances in sonothrombolysis techniques using piezoelectric transducers.
        Sensors. 2020; 20: 1288
        • Siegel RJ
        • Luo H
        Ultrasound thrombolysis.
        Ultrasonics. 2008; 48: 312-320
        • Bader KB
        • Gruber MJ
        • Holland CK.
        Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis.
        Ultrasound Med Biol. 2015; 41: 187-196
        • Francis CW
        • Blinc A
        • Lee S
        • Cox C.
        Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots.
        Ultrasound Med Biol. 1995; 21: 419-424
        • Weiss HL
        • Selvaraj P
        • Okita K
        • Matsumoto Y
        • Voie A
        • Hoelscher T
        • et al.
        Mechanical clot damage from cavitation during sonothrombolysis.
        J Acoust Soc Am. 2013; 133: 3159-3175
        • Siegel RJ
        • Atar S
        • Fishbein MC
        • Brasch AV
        • Peterson TM
        • Nagai T
        • et al.
        Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries.
        Echocardiography. 2001; 18: 247-257
        • Stone MJ
        • Frenkel V
        • Dromi S
        • Thomas P
        • Lewis RP
        • Li KCP
        • et al.
        Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study.
        Thromb Res. 2007; 121: 193-202
        • Suchkova VN
        • Baggs RB
        • Francis CW.
        Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model.
        Circulation. 2000; 101: 2296-2301
        • Alexandrov AV
        • Molina CA
        • Grotta JC
        • Garami Z
        • Ford SR
        • Alvarez-Sabin J
        • et al.
        Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.
        N Engl J Med. 2004; 351: 2170-2178
        • Daffertshofer M
        • Gass A
        • Ringleb P
        • Sitzer M
        • Sliwka U
        • Els T
        • et al.
        Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia.
        Stroke. 2005; 36: 1441-1446
        • Baron C
        • Aubry JF
        • Tanter M
        • Meairs S
        • Fink M.
        Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis.
        Ultrasound Med Biol. 2009; 35: 1148-1158
        • Hudson M
        • Greenbaum A
        • Brenton L
        • Gibson CM
        • Siegel R
        • Reeves LR
        • et al.
        Adjunctive transcutaneous ultrasound with thrombolysis.
        JACC Cardiovasc Interv. 2010; 3: 352-359
        • Chen X
        • Leeman JE
        • Wang J
        • Pacella JJ
        • Villanueva FS.
        New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.
        Ultrasound Med Biol. 2014; 40: 258-262
        • Auboire L
        • Sennoga CA
        • Hyvelin JM
        • Ossant F
        • Escoffre JM
        • Tranquart F
        • et al.
        Microbubbles combined with ultrasound therapy in ischemic stroke: a systematic review of in-vivo preclinical studies.
        PLoS One. 2018; 13e0191788
        • Birnbaum Y
        • Luo H
        • Nagai T
        • Fishbein MC
        • Peterson TM
        • Li S
        • et al.
        Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles.
        Circulation. 1998; 97: 130-134
        • Culp WC
        • Flores R
        • Brown AT
        • Lowery JD
        • Roberson PK
        • Hennings LJ
        • et al.
        Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke.
        Stroke. 2011; 42: 2280-2285
        • Gao S
        • Zhu Q
        • Guo M
        • Gao Y
        • Dong X
        • Chen Z
        • et al.
        Ultrasound and intra-clot microbubbles enhanced catheter-directed thrombolysis in vitro and in vivo.
        Ultrasound Med Biol. 2017; 43: 1671-1678
        • Wang B
        • Wang L
        • Zhou XB
        • Liu YM
        • Wang M
        • Qin H
        • et al.
        Thrombolysis effect of a novel targeted microbubble with low-frequency ultrasound in vivo.
        Thromb Haemost. 2008; 100: 356-361
        • Doelare SAN
        • Jean Pierre DM
        • Nederhoed JH
        • Smorenburg SPM
        • Lely RJ
        • Jongkind V
        • et al.
        Microbubbles and ultrasound accelerated thrombolysis for peripheral arterial occlusions: the outcomes of a single arm phase II trial.
        Eur J Vasc Endovasc Surg. 2021; 62: 463-468
        • Zhu Q
        • Dong G
        • Wang Z
        • Sun L
        • Gao S
        • Liu Z.
        Intra-clot microbubble-enhanced ultrasound accelerates catheter-directed thrombolysis for deep vein thrombosis: a clinical study.
        Ultrasound Med Biol. 2019; 45: 2427-2433
        • Sutton JT
        • Ivancevich NM
        • Perrin SR
        • Vela DC
        • Holland CK.
        Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model.
        Ultrasound Med Biol. 2013; 39: 813-824
        • Fix SM
        • Nyankima AG
        • McSweeney MD
        • Tsuruta JK
        • Lai SK
        • Dayton PA.
        Accelerated clearance of ultrasound contrast agents containing polyethylene glycol is associated with the generation of anti-polyethylene glycol antibodies.
        Ultrasound Med Biol. 2018; 44: 1266-1280
        • Sheeran PS
        • Rojas JD
        • Puett C
        • Hjelmquist J
        • Arena CB
        • Dayton PA.
        Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.
        Ultrasound Med Biol. 2015; 41: 814-831
        • Pajek D
        • Burgess A
        • Huang Y
        • Hynynen K.
        High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.
        Ultrasound Med Biol. 2014; 40: 2151-2161
        • Jiang N
        • Hu B
        • Cao S
        • Gao S
        • Cao Q
        • Chen J
        • et al.
        Stable low-dose oxygen release using H2O2/perfluoropentane phase-change nanoparticles with low-intensity focused ultrasound for coronary thrombolysis.
        Ultrasound Med Biol. 2020; 46: 2765-2774
        • Masood U
        • Riaz R
        • Ullah Shah S
        • Isani Majeed A
        • Rukh Abbas S
        Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets for potential treatment of deep venous thrombosis.
        RSC Adv. 2022; 12: 665-672
        • Xu J
        • Zhou J
        • Zhong Y
        • Zhang Y
        • Liu J
        • Chen Y
        • et al.
        Phase transition nanoparticles as multimodality contrast agents for the detection of thrombi and for targeting thrombolysis: in vitro and in vivo experiments.
        ACS Appl Mater Interfaces. 2017; 9: 42525-42535
        • Zhong Y
        • Zhang Y
        • Xu J
        • Zhou J
        • Liu J
        • Ye M
        • et al.
        Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy.
        ACS Nano. 2019; 13: 3387-3403
        • Bai S
        • Liao J
        • Zhang B
        • Zhao M
        • You B
        • Li P
        • et al.
        Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi.
        Biomater Sci. 2020; 8: 5047-5060
        • Guo S
        • Guo X
        • Wang X
        • Zhou D
        • Du X
        • Han M
        • et al.
        Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets.
        Ultrason Sonochem. 2019; 54: 183-191
        • El Kadi S
        • Qian L
        • Zeng P
        • Lof J
        • Stolze E
        • Xie F
        • et al.
        Efficacy of sonothrombolysis using acoustically activated perflutren nanodroplets versus perflutren microbubbles.
        Ultrasound Med Biol. 2021; 47: 1814-1825
        • Kim J
        • DeRuiter RM
        • Goel L
        • Xu Z
        • Jiang X
        • Dayton PA.
        A comparison of sonothrombolysis in aged clots between low-boiling-point phase-change nanodroplets and microbubbles of the same composition.
        Ultrasound Med Biol. 2020; 46: 3059-3068
        • Kim J
        • Bautista KJB
        • Deruiter RM
        • Goel L
        • Jiang X
        • Xu Z
        • et al.
        An analysis of sonothrombolysis and cavitation for retracted and unretracted clots using microbubbles versus low-boiling-point nanodroplets.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2022; 69: 711-719
        • Kim H
        • Kim J
        • Wu H
        • Zhang B
        • Dayton PA
        • Jiang X.
        A multi-pillar piezoelectric stack transducer for nanodroplet mediated intravascular sonothrombolysis.
        Ultrasonics. 2021; 116106520
        • Goel L
        • Wu H
        • Zhang B
        • Kim J
        • Dayton PA
        • Xu Z
        • et al.
        Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots.
        Microsyst Nanoeng. 2021; 7: 3
        • Zhang B
        • Wu H
        • Goel L
        • Kim H
        • Peng C
        • Kim J
        • et al.
        Magneto-sonothrombolysis with combination of magnetic microbubbles and nanodroplets.
        Ultrasonics. 2021; 116106487
        • Becker A
        • Marxer E
        • Brüßler J
        • Hoormann AS
        • Kuhnt D
        • Bakowsky U
        • et al.
        Ultrasound active nanoscaled lipid formulations for thrombus lysis.
        Eur J Pharm Biopharm. 2011; 77: 424-429
        • Brüßler J
        • Strehlow B
        • Becker A
        • Schubert R
        • Schümmelfeder J
        • Nimsky C
        • et al.
        Nanoscaled ultrasound contrast agents for enhanced sonothrombolysis.
        Colloids Surf B Biointerfaces. 2018; 172: 728-733
        • Ma L
        • Wang Y
        • Zhang S
        • Qian X
        • Xue N
        • Jiang Z
        • et al.
        Deep penetration of targeted nanobubbles enhanced cavitation effect on thrombolytic capacity.
        Bioconjug Chem. 2020; 31: 369-374
        • Jin H
        • Tan H
        • Zhao L
        • Sun W
        • Zhu L
        • Sun Y
        • et al.
        Ultrasound-triggered thrombolysis using urokinase-loaded nanogels.
        Int J Pharm. 2012; 434: 384-390
        • Teng Y
        • Jin H
        • Nan D
        • Li M
        • Fan C
        • Liu Y
        • et al.
        In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model.
        Bioact Mater. 2017; 3: 102-109
        • Sheeran PS
        • Dayton PA.
        Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects.
        Scientifica. 2014; 2014e579684
        • Rapoport N
        • Gao Z
        • Kennedy A.
        Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
        JNCI J Natl Cancer Inst. 2007; 99: 1095-1106
        • Sheeran PS
        • Luois S
        • Dayton PA
        • Matsunaga TO.
        Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.
        Langmuir. 2011; 27: 10412-10420
        • Bardin D
        • Kendall MR
        • Dayton PA
        • Lee AP.
        Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.
        Biomicrofluidics. 2013; 7034112
        • Li DS
        • Schneewind S
        • Bruce M
        • Khaing Z
        • O'Donnell M
        • Pozzo L
        Spontaneous nucleation of stable perfluorocarbon emulsions for ultrasound contrast agents.
        Nano Lett. 2019; 19: 173-181
        • Kripfgans OD
        • Fowlkes JB
        • Woydt M
        • Eldevik OP
        • Carson PL.
        In vivo droplet vaporization for occlusion therapy and phase aberration correction.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 726-738
        • Sheeran PS
        • Matsuura N
        • Borden MA
        • Williams R
        • Matsunaga TO
        • Burns PN
        • et al.
        Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2017; 64: 252-263
        • Sheeran PS
        • Dayton PA.
        Phase-change contrast agents for imaging and therapy.
        Curr Pharm Des. 2012; 18: 2152-2165
        • Wu SY
        • Fix SM
        • Arena CB
        • Chen CC
        • Zheng W
        • Olumolade OO
        • et al.
        Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery.
        Phys Med Biol. 2018; 63035002
        • Xu T
        • Cui Z
        • Li D
        • Cao F
        • Xu J
        • Zong Y
        • et al.
        Cavitation characteristics of flowing low and high boiling-point perfluorocarbon phase-shift nanodroplets during focused ultrasound exposures.
        Ultrason Sonochem. 2020; 65105060
        • Welch PJ
        • Li DS
        • Forest CR
        • Pozzo LD
        • Shi C.
        Perfluorocarbon nanodroplet size, acoustic vaporization, and inertial cavitation affected by lipid shell composition in vitro.
        J Acoust Soc Am. 2022; 152: 2493-2504
        • Zeng P
        • Qian L
        • Lof J
        • Stolze E
        • El Kadi S
        • Bargar T
        • et al.
        Delayed echo enhancement imaging to quantify myocardial infarct size.
        J Am Soc Echocardiogr. 2021; 34: 898-909
        • Begines B
        • Ortiz T
        • Pérez-Aranda M
        • Martínez G
        • Merinero M
        • Argüelles-Arias F
        • et al.
        Polymeric nanoparticles for drug delivery: recent developments and future prospects.
        Nanomaterials. 2020; 10: 1403