Advertisement
Original Contribution| Volume 49, ISSUE 5, P1182-1193, May 2023

Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse

      Objective

      Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as “point sources” for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse.

      Methods

      A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested.

      Discussion

      On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%–99% of the hydrophone-corrected pressure, while collapse obtained 95%–99%.

      Conclusion

      The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bader KB
        • Vlaisavljevich E
        • Maxwell AD
        For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy.
        Ultrasound Med Biol. 2019; 45: 1056-1080
        • Khokhlova VA
        • Fowlkes JB
        • Roberts WW
        • Schade GR
        • Xu Z
        • Khokhlova TD
        • et al.
        Histotripsy methods in mechanical disintegration of tissue: towards clinical applications.
        Int J Hyperthermia. 2015; 31: 145-162
        • Xu Z
        • Hall TL
        • Fowlkes JB
        • Cain CA
        Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy).
        J Acoust Soc Am. 2007; 122: 229-236
        • Xu Z
        • Ludomirsky A
        • Eun LY
        • Hall TL
        • Tran BC
        • Fowlkes JB
        • et al.
        Controlled ultrasound tissue erosion.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 726-736
        • Maxwell AD
        • Wang TY
        • Cain CA
        • Fowlkes JB
        • Sapozhnikov OA
        • Bailey MR
        • et al.
        Cavitation clouds created by shock scattering from bubbles during histotripsy.
        J Acoust Soc Am. 2011; 130: 1888-1898
        • Maxwell AD
        • Cain CA
        • Duryea AP
        • Yuan L
        • Gurm HS
        • Xu Z
        Noninvasive thrombolysis using pulsed ultrasound cavitation therapy—histotripsy.
        Ultrasound Med Biol. 2009; 35: 1982-1994
        • Vlaisavljevich E
        • Lin KW
        • Maxwell A
        • Warnez MT
        • Mancia L
        • Singh R
        • et al.
        Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
        Ultrasound Med Biol. 2015; 41: 1651-1667
        • Xu Z
        • Raghavan M
        • Hall TL
        • Mycek MA
        • Fowlkes JB
        • Cain CA
        Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy—histotripsy.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1122-1132
        • Heo J
        • Joung C
        • Pahk K
        • Pahk KJ
        Investigation of the long-term healing response of the liver to boiling histotripsy treatment in vivo.
        Sci Rep. 2022; 12: 14462
        • Khokhlova TD
        • Schade GR
        • Wang YN
        • Buravkov SV
        • Chernikov VP
        • Simon JC
        • et al.
        Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney.
        Sci Rep. 2019; 9: 20176
        • Khokhlova TD
        • Canney MS
        • Khokhlova VA
        • Sapozhnikov OA
        • Crum LA
        • Bailey MR
        Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling.
        J Acoust Soc Am. 2011; 130: 3498-3510
        • Pahk KJ
        • Lee S
        • Gélat P
        • de Andrade MO
        • Saffari N
        The interaction of shockwaves with a vapour bubble in boiling histotripsy: the shock scattering effect.
        Ultrason Sonochem. 2021; 70105312
        • Pahk KJ
        • de Andrade MO
        • Gélat P
        • Kim H
        • Saffari N
        Mechanical damage induced by the appearance of rectified bubble growth in a viscoelastic medium during boiling histotripsy exposure.
        Ultrason Sonochem. 2019; 53: 164-177
        • Xu Z
        • Hall TL
        • Vlaisavljevich E
        • Lee FT
        Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound.
        Int J Hyperthermia. 2021; 38: 561-575
        • Knott EA
        • Longo KC
        • Vlaisavljevich E
        • Zhang X
        • Swietlik JF
        • Xu Z
        • et al.
        Transcostal histotripsy ablation in an in vivo acute hepatic porcine model.
        Cardiovasc Intervent Radiol. 2021; 44: 1643-1650
        • Lake AM
        • Hall TL
        • Kieran K
        • Fowlkes JB
        • Cain CA
        • Roberts WW
        Histotripsy: minimally invasive technology for prostatic tissue ablation in an in vivo canine model.
        Urology. 2008; 72: 682-686
        • Longo KC
        • Zlevor AM
        • Laeseke PF
        • Swietlik JF
        • Knott EA
        • Rodgers AC
        • et al.
        Histotripsy ablations in a porcine liver model: feasibility of respiratory motion compensation by alteration of the ablation zone prescription shape.
        Cardiovasc Intervent Radiol. 2020; 43: 1695-1701
        • Roberts WW
        Development and translation of histotripsy: current status and future directions.
        Curr Opin Urol. 2014; 24: 104-110
        • Roberts WW
        • Hall TL
        • Ives K
        • Wolf SJ
        • Fowlkes BJ
        • Cain CA
        Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney.
        J Urol. 2006; 175: 734-738
        • Styn NR
        • Wheat JC
        • Hall TL
        • Roberts WW
        Histotripsy of VX-2 tumor implanted in a renal rabbit model.
        J Endourol. 2010; 24: 1145-1150
        • Vidal-Jove J
        • Serres X
        • Vlaisavljevich E
        • Cannata J
        • Duryea A
        • Miller R
        • et al.
        First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study.
        Int J Hyperthermia. 2022; 39: 1115-1123
        • Vlaisavljevich E
        • Owens G
        • Lundt J
        • Teofilovic D
        • Ives K
        • Duryea A
        • et al.
        Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model.
        Ultrasound Med Biol. 2017; 43: 1237-1251
        • Vlaisavljevich E
        • Kim Y
        • Allen S
        • Owens G
        • Pelletier S
        • Cain C
        • et al.
        Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model.
        Ultrasound Med Biol. 2013; 39: 1398-1409
        • Maxwell AD
        • Cain CA
        • Hall TL
        • Fowlkes JB
        • Xu Z
        Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.
        Ultrasound Med Biol. 2013; 39: 449-465
        • O'Donnell M
        • Flax SW
        Phase aberration measurements in medical ultrasound: human studies.
        Ultrason Imaging. 1988; 10: 1-11
        • Hinkelman LM
        • Mast TD
        • Metlay LA
        • Waag RC
        The effect of abdominal wall morphology on ultrasonic pulse distortion: Part I. Measurements.
        J Acoust Soc Am. 1998; 104: 3635-3649
        • Zhang B
        • Pinton GF
        • Nightingale KR
        On the relationship between spatial coherence and in situ pressure for abdominal imaging.
        Ultrasound Med Biol. 2021; 47: 2310-2320
        • Flax SW
        • O'Donnell M
        Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1988; 35: 758-767
        • Sumino Y
        • Waag RC
        Measurements of ultrasonic pulse arrival time differences produced by abdominal wall specimens.
        J Acoust Soc Am. 1991; 90: 2924-2930
        • Liu D
        • Waag RC
        Correction of ultrasonic wavefront distortion using backpropagation and a reference waveform method for time-shift compensation.
        J Acoust Soc Am. 1994; 96: 649-660
        • Ritchie R
        • Collin J
        • Coussios C
        • Leslie T
        Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat.
        Ultrasound Med Biol. 2013; 39: 1785-1793
        • Okita K
        • Narumi R
        • Azuma T
        • Furusawa H
        • Shidooka J
        • Takagi S
        • et al.
        Effects of breast structure on high-intensity focused ultrasound focal error.
        J Ther Ultrasound. 2018; 6: 4
        • Peek AT
        • Hunter C
        • Kreider W
        • Khokhlova TD
        • Rosnitskiy PB
        • Yuldashev PV
        • et al.
        Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications.
        J Acoust Soc Am. 2020; 148: 3569-3580
        • Bobina AS
        • Rosnitskiy PB
        • Khokhlova TD
        • Yuldashev PV
        • Khokhlova VA
        Effect of abdominal wall inhomogeneities on the focusing of an ultrasonic beam at different positions of the transducer.
        Bull Russ Acad Sci Phys. 2021; 85: 675-680
        • Lin K
        • Kim Y
        • Maxwell AD
        • Wang T
        • Hall TL
        • Xu Z.
        • et al.
        Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2014; 61: 251-265
        • Li D
        • Shen G
        • Bai J
        • Chen Y
        Focus shift and phase correction in soft tissues during focused ultrasound surgery.
        IEEE Trans Biomed Eng. 2011; 58: 1621-1628
        • Yeats E
        • Gupta D
        • Xu Z
        • Hall TL
        Effects of phase aberration on transabdominal focusing for a large aperture, low f-number histotripsy transducer.
        Phys Med Biol. 2022; 67155004
        • Dillon CR
        • Farrer A
        • McLean H
        • Almquist S
        • Christensen D
        • Payne A
        Experimental assessment of phase aberration correction for breast MRgFUS therapy.
        Int J Hyperthermia. 2018; 34: 731-743
        • Gélat P
        • ter Haar G
        • Saffari N
        A comparison of methods for focusing the field of a HIFU array transducer through human ribs.
        Phys Med Biol. 2014; 59: 3139-3171
        • Mougenot C
        • Tillander M
        • Koskela J
        • Köhler MO
        • Moonen C
        • Ries M
        High intensity focused ultrasound with large aperture transducers: a MRI based focal point correction for tissue heterogeneity.
        Med Phys. 2012; 39: 1936-1945
        • Qiao S
        • Elbes D
        • Boubriak O
        • Urban JPG
        • Coussios CC
        • Cleveland RO
        Delivering focused ultrasound to intervertebral discs using time-reversal.
        Ultrasound Med Biol. 2019; 45: 2405-2416
        • Quesson B
        • Merle M
        • Köhler MO
        • Mougenot C
        • Roujol S
        • de Senneville BD
        • et al.
        A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver.
        Med Phys. 2010; 37: 2533-2540
        • Robertson J
        • Martin E
        • Cox B
        • Treeby BE
        Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
        Phys Med Biol. 2017; 62: 2559-2580
        • Sinden D
        • ter Haar G
        Dosimetry implications for correct ultrasound dose deposition: uncertainties in descriptors, planning and treatment delivery.
        Transl Cancer Res. 2014; 3: 459-471
        • Thomas GPL
        • Khokhlova TD
        • Bawiec CR
        • Peek AT
        • Sapozhnikov OA
        • O'Donnell M
        • et al.
        Phase-aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68: 1040-1050
        • Thomas GPL
        • Khokhlova TD
        • Sapozhnikov OA
        • Wang YN
        • Totten S
        • Khokhlova VA
        In vivo aberration correction for transcutaneous HIFU therapy using a multi-element array.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2022; 69: 2955-2964
        • Fink M
        Time reversal of ultrasonic fields: I. Basic principles.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1992; 39: 555-566
        • Wu F
        • Thomas J
        • Fink M
        Time reversal of ultrasonic fields: II. Experimental results.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1992; 39: 567-578
        • Kripfgans OD
        • Fowlkes JB
        • Woydt M
        • Eldevik OP
        • Carson PL
        In vivo droplet vaporization for occlusion therapy and phase aberration correction.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 726-738
        • Psychoudakis D
        • Fowlkes JB
        • Volakis JL
        • Carson PL
        Potential of microbubbles for use as point targets in phase aberration correction.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 1639-1648
        • Pernot M
        • Montaldo G
        • Tanter M
        • Fink M
        Ultrasonic stars” for time-reversal focusing using induced cavitation bubbles.
        Appl Phys Lett. 2006; 88034102
        • Haworth KJ
        • Fowlkes JB
        • Carson PL
        • Kripfgans OD
        Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization.
        Ultrasound Med Biol. 2008; 34: 435-445
        • Gateau J
        • Marsac L
        • Pernot M
        • Aubry JF
        • Tanter M
        • Fink M
        Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature.
        IEEE Trans Biomed Eng. 2010; 57: 134-144
        • Sukovich JR
        • Macoskey JJ
        • Lundt JE
        • Gerhardson TI
        • Hall TL
        • Xu Z
        Real-time transcranial histotripsy treatment localization and mapping using acoustic cavitation emission feedback.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2020; 67: 1178-1191
        • Leighton TG
        The acoustic bubble.
        Academic Press, San Diego, CA1994
        • Zhong P
        • Cioanta I
        • Cocks FH
        • Preminger GM
        Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
        J Acoust Soc Am. 1997; 101: 2940-2950
        • Johnston K
        • Tapia-Siles C
        • Gerold B
        • Postema M
        • Cochran S
        • Cuschieri A
        • et al.
        Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal.
        Ultrasonics. 2014; 54: 2151-2158
        • Lauterborn W
        • Vogel A
        Shock wave emission by laser generated bubbles.
        (editor)in: Delale CF Bubble dynamics and shock waves. Springer, Berlin/Heidelberg2013: 67-103
        • Macoskey JJ
        • Hall TL
        • Sukovich JR
        • Choi SW
        • Ives K
        • Johnsen E
        • et al.
        Soft-tissue aberration correction for histotripsy.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2018; 65: 2073-2085
        • Plesset MS
        Shockwaves from Cavity Collapse.
        Philos Trans R Soc Lond Ser Math Phys Sci. 1966; 260: 241-244
        • Reisman GE
        • Wang YC
        • Brennen CE
        Observations of shock waves in cloud cavitation.
        J Fluid Mech. 1998; 355: 255-283
        • Brujan EA
        • Ikeda T
        • Matsumoto Y
        Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
        Phys Med Biol. 2005; 50: 4797-4809
        • Macoskey JJ
        • Choi SW
        • Hall TL
        • Vlaisavljevich E
        • Lundt JE
        • Lee FT
        • et al.
        Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation.
        Phys Med Biol. 2018; 63055013
        • Lu N
        • Hall TL
        • Sukovich JR
        • Choi SW
        • Snell J
        • McDannold N
        • et al.
        Two-step aberration correction: application to transcranial histotripsy.
        Phys Med Biol. 2022; 67125009
        • Mørch KA
        On the collapse of cavity clusters in flow cavitation.
        (editor)in: Lauterborn W Cavitation and inhomogeneities in underwater acoustics. Springer, Berlin/Heidelberg1980: 95-100
        • Wang YC
        • Brennen CE
        Shock wave development in the collapse of a cloud of bubbles.
        Cavitation and multiphase flow. (Fluids Engineering Division, Vol. 194. American Society of Mechanical Engineers, New York1994: 15-19
        • Ogloblina D
        • Schmidt SJ
        • Adams NA
        Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls.
        EPJ Web Conf. 2018; 180: 02079
        • Vlaisavljevich E
        • Gerhardson T
        • Hall T
        • Xu Z
        Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior.
        Phys Med Biol. 2017; 62: 1269-1290
        • Stocker GE
        • Lundt JE
        • Sukovich JR
        • Miller RM
        • Duryea AP
        • Hall TL
        • et al.
        A modular, kerf-minimizing approach for therapeutic ultrasound phased array construction.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2022; 69: 2766-2775
        • Fink M
        • Prada C
        Acoustic time-reversal mirrors.
        Inverse Probl. 2001; 17: R1-38
        • Almquist S
        • Parker DL
        • Christensen DA
        Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies.
        J Ther Ultrasound. 2016; 4: 30
        • Aubry JF
        • Tanter M
        • Pernot M
        • Thomas JL
        • Fink M
        Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.
        J Acoust Soc Am. 2003; 113: 84-93
        • Clement GT
        • Hynynen K
        A non-invasive method for focusing ultrasound through the human skull.
        Phys Med Biol. 2002; 47: 1219-1236
        • Marquet F
        • Pernot M
        • Aubry JF
        • Montaldo G
        • Marsac L
        • Tanter M
        • et al.
        Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results.
        Phys Med Biol. 2009; 54: 2597-2613
        • Khokhlova T
        • Rosnitskiy P
        • Hunter C
        • Maxwell A
        • Kreider W
        • ter Haar G
        • et al.
        Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion.
        J Acoust Soc Am. 2018; 144: 1160-1169
        • Wu D
        • Gao S
        • Li J
        • Yao L
        • Yu X
        • Zhang Z
        • et al.
        Amplitude and phase relation of harmonics in nonlinear focused ultrasound.
        AIP Adv. 2022; 12065317
        • Nguyen TN
        • Do MN
        • Oelze ML
        Visualization of the intensity field of a focused ultrasound source in situ.
        IEEE Trans Med Imaging. 2019; 38: 124-133
        • Thies M
        • Oelze ML
        Combined therapy planning, real-time monitoring, and low intensity focused ultrasound treatment using a diagnostic imaging array.
        IEEE Trans Med Imaging. 2022; 41: 1410-1419
        • Thies M
        • Oelze ML
        Real-time visualization of a focused ultrasound beam using ultrasonic backscatter.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68: 1213-1223
        • Zhou X
        • Wang Y
        • Li Y
        • Zhao Y
        • Shan T
        • Gong X
        • et al.
        Acoustic beam mapping for guiding HIFU therapy in vivo using sub-therapeutic sound pulse and passive beamforming.
        IEEE Trans Biomed Eng. 2022; 69: 1663-1673
        • Wagner MG
        • Periyasamy S
        • Kutlu AZ
        • Pieper AA
        • Swietlik JF
        • Ziemlewicz T.J.
        • et al.
        An X-ray C-arm Guided Automatic Targeting System for Histotripsy.
        IEEE Trans Biomed Eng. 2022; : 1-12