Advertisement
Original Contribution| Volume 49, ISSUE 5, P1153-1163, May 2023

Intercellular Calcium Waves and Permeability Change Induced by Vertically Deployed Surface Acoustic Waves in a Human Cerebral Microvascular Endothelial Cell Line (hCMEC/D3) Monolayer

  • Ming-Yen Hsiao
    Correspondence
    Corresponding author. Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, No. 7, Zhongshan South Road, Zhongzheng District, Taipei City 100, Taiwan.
    Affiliations
    Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan

    Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
    Search for articles by this author
  • Defei Liao
    Affiliations
    Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
    Search for articles by this author
  • Gaoming Xiang
    Affiliations
    Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
    Search for articles by this author
  • Pei Zhong
    Affiliations
    Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
    Search for articles by this author

      Objective

      The ultrasound-mediated blood–brain barrier (BBB) opening with microbubbles has been widely employed, while recent studies also indicate the possibility that ultrasound alone can open the BBB through a direct mechanical effect. However, the exact mechanisms through which ultrasound interacts with the BBB and whether it can directly trigger intracellular signaling and a permeability change in the BBB endothelium remain unclear.

      Methods

      Vertically deployed surface acoustic waves (VD-SAWs) were applied on a human cerebral microvascular endothelial cell line (hCMEC/D3) monolayer using a 33-MHz interdigital transducer that exerts shear stress-predominant stimulation. The intracellular calcium response was measured by fluorescence imaging, and the permeability of the hCMEC/D3 monolayer was assessed by transendothelial electrical resistance (TEER).

      Discussion

      At a certain intensity threshold, VD-SAWs induced an intracellular calcium surge that propagated to adjacent cells as intercellular calcium waves. VD-SAWs induced a TEER decrease in a pulse repetition frequency-dependent manner, thereby suggesting possible involvement of the mechanosensitive ion channels.

      Conclusion

      The unique VD-SAW system enables more physiological mechanical stimulation of the endothelium monolayer. Moreover, it can be easily combined with other measurement devices, providing a useful platform for further mechanistic studies on ultrasound-mediated BBB opening.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blackmore J
        • Shrivastava S
        • Sallet J
        • Butler CR
        • Cleveland RO.
        Ultrasound neuromodulation: a review of results, mechanisms and safety.
        Ultrasound Med Biol. 2019; 45: 1509-1536
        • Treat LH
        • McDannold N
        • Vykhodtseva N
        • Zhang Y
        • Tam K
        • Hynynen K.
        Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound.
        Int J Cancer. 2007; 121: 901-907
        • Hynynen K
        • McDannold N
        • Vykhodtseva N
        • Jolesz FA.
        Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits.
        Radiology. 2001; 220: 640-646
        • McDannold N
        • Vykhodtseva N
        • Hynynen K.
        Blood–brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index.
        Ultrasound Med Biol. 2008; 34: 834-840
        • Ting CY
        • Fan CH
        • Liu HL
        • Huang CY
        • Hsieh HY
        • Yen TC
        • et al.
        Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment.
        Biomaterials. 2012; 33: 704-712
        • Mead BP
        • Kim N
        • Miller GW
        • Hodges D
        • Mastorakos P
        • Klibanov AL
        • et al.
        Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model.
        Nano Lett. 2017; 17: 3533-3542
        • Lin CY
        • Tsai CH
        • Feng LY
        • Chai WY
        • Lin CJ
        • Huang CY
        • et al.
        Focused ultrasound-induced blood–brain barrier opening enhanced vascular permeability for GDNF delivery in Huntington's disease mouse model.
        Brain Stimul. 2019; 12: 1143-1150
        • Lin CY
        • Hsieh HY
        • Chen CM
        • Wu SR
        • Tsai CH
        • Huang CY
        • et al.
        Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood–brain barrier opening in Parkinson's disease mouse model.
        J Control Release. 2016; 235: 72-81
        • Sheikov N
        • McDannold N
        • Vykhodtseva N
        • Jolesz F
        • Hynynen K.
        Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles.
        Ultrasound Med Biol. 2004; 30: 979-989
        • Hynynen K
        • McDannold N
        • Sheikov NA
        • Jolesz FA
        • Vykhodtseva N.
        Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications.
        Neuroimage. 2005; 24: 12-20
        • Sheikov N
        • McDannold N
        • Jolesz F
        • Zhang YZ
        • Tam K
        • Hynynen K.
        Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier.
        Ultrasound Med Biol. 2006; 32: 1399-1409
        • Sheikov N
        • McDannold N
        • Sharma S
        • Hynynen K.
        Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium.
        Ultrasound Med Biol. 2008; 34: 1093-1104
        • Choi YK
        • Kim KW.
        Blood–neural barrier: its diversity and coordinated cell-to-cell communication.
        BMB Rep. 2008; 41: 345-352
        • Cardoso FL
        • Brites D
        • Brito MA.
        Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches.
        Brain Res Rev. 2010; 64: 328-363
        • Shang X
        • Wang P
        • Liu Y
        • Zhang Z
        • Xue Y.
        Mechanism of low-frequency ultrasound in opening blood–tumor barrier by tight junction.
        J Mol Neurosci. 2011; 43: 364-369
        • Jalali S
        • Huang Y
        • Dumont DJ
        • Hynynen K.
        Focused ultrasound-mediated BBB disruption is associated with an increase in activation of AKT: experimental study in rats.
        BMC Neurol. 2010; 10: 114
        • Boitano S
        • Sanderson MJ
        • Dirksen ER.
        A role for Ca(2+)-conducting ion channels in mechanically-induced signal transduction of airway epithelial cells.
        J Cell Sci. 1994; 107: 3037-3044
        • Demer LL
        • Wortham CM
        • Dirksen ER
        • Sanderson MJ.
        Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells.
        Am J Physiol. 1993; 264: H2094-H2102
        • Junkin M
        • Lu Y
        • Long J
        • Deymier PA
        • Hoying JB
        • Wong PK.
        Mechanically induced intercellular calcium communication in confined endothelial structures.
        Biomaterials. 2013; 34: 2049-2056
        • Boitano S
        • Dirksen ER
        • Sanderson MJ.
        Intercellular propagation of calcium waves mediated by inositol trisphosphate.
        Science. 1992; 258: 292-295
        • D'Hondt C
        • Ponsaerts R
        • Srinivas SP
        • Vereecke J
        • Himpens B.
        Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions.
        Invest Ophthalmol Vis Sci. 2007; 48: 120-133
        • Domenighetti AA
        • Beny JL
        • Chabaud F
        • Frieden M.
        An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture.
        J Physiol. 1998; 513: 103-116
        • Hwang JY
        • Lee NS
        • Lee C
        • Lam KH
        • Kim HH
        • Woo J
        • et al.
        Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells.
        Biotechnol Bioeng. 2013; 110: 2697-2705
        • Tiruppathi C
        • Ahmmed GU
        • Vogel SM
        • Malik AB.
        Ca2+ signaling, TRP channels, and endothelial permeability.
        Microcirculation. 2006; 13: 693-708
        • Komarova YA
        • Mehta D
        • Malik AB.
        Dual regulation of endothelial junctional permeability.
        Sci STKE. 2007; 2007: re8
        • Vandenbroucke E
        • Mehta D
        • Minshall R
        • Malik AB.
        Regulation of endothelial junctional permeability.
        Ann NY Acad Sci. 2008; 1123: 134-145
        • Yuan SY.
        Protein kinase signaling in the modulation of microvascular permeability.
        Vascul Pharmacol. 2002; 39: 213-223
        • Bae MJ
        • Lee YM
        • Kim YH
        • Han HS
        • Lee HJ.
        Utilizing ultrasound to transiently increase blood–brain barrier permeability, modulate of the tight junction proteins, and alter cytoskeletal structure.
        Curr Neurovasc Res. 2015; 12: 375-383
        • Kung Y
        • Lan C
        • Hsiao MY
        • Sun MK
        • Hsu YH
        • Huang AP
        • et al.
        Focused shockwave induced blood–brain barrier opening and transfection.
        Sci Rep. 2018; 8: 2218
        • Ranade SS
        • Syeda R
        • Patapoutian A.
        Mechanically activated ion channels.
        Neuron. 2015; 87: 1162-1179
        • Haswell ES
        • Phillips R
        • Rees DC.
        Mechanosensitive channels: what can they do and how do they do it?.
        Structure. 2011; 19: 1356-1369
        • Yang Y
        • Pacia CP
        • Ye D
        • Zhu L
        • Baek H
        • Yue Y
        • et al.
        Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation.
        Brain Stimul. 2021; 14: 790-800
        • Qiu Z
        • Guo J
        • Kala S
        • Zhu J
        • Xian Q
        • Qiu W
        • et al.
        The mechanosensitive ion channel piezo1 significantly mediates in vitro ultrasonic stimulation of neurons.
        iScience. 2019; 21: 448-457
        • Liao D
        • Hsiao MY
        • Xiang G
        • Zhong P.
        Optimal pulse length of insonification for Piezo1 activation and intracellular calcium response.
        Sci Rep. 2021; 11: 709
        • Liao D
        • Li F
        • Lu D
        • Zhong P.
        Activation of Piezo1 mechanosensitive ion channel in HEK293T cells by 30MHz vertically deployed surface acoustic waves.
        Biochem Biophys Res Commun. 2019; 518: 541-547
        • Shankar H
        • Pagel PS.
        Potential adverse ultrasound-related biological effects: a critical review.
        Anesthesiology. 2011; 115: 1109-1124
        • Yuan F
        • Yang C
        • Zhong P.
        Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow.
        Proc Natl Acad Sci USA. 2015; 112: E7039-E7047
        • Li F
        • Park TH
        • Sankin G
        • Gilchrist C
        • Liao D
        • Chan CU
        • et al.
        Mechanically induced integrin ligation mediates intracellular calcium signaling with single pulsating cavitation bubbles.
        Theranostics. 2021; 11: 6090-6104
        • Srinivasan B
        • Kolli AR
        • Esch MB
        • Abaci HE
        • Shuler ML
        • Hickman JJ.
        TEER measurement techniques for in vitro barrier model systems.
        J Lab Autom. 2015; 20: 107-126
        • Poller B
        • Gutmann H
        • Krahenbuhl S
        • Weksler B
        • Romero I
        • Couraud PO
        • et al.
        The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies.
        J Neurochem. 2008; 107: 1358-1368
        • Vu K
        • Weksler B
        • Romero I
        • Couraud PO
        • Gelli A.
        Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans.
        Eukaryot Cell. 2009; 8: 1803-1807
        • Weksler B
        • Romero IA
        • Couraud PO.
        The hCMEC/D3 cell line as a model of the human blood brain barrier.
        Fluids Barriers CNS. 2013; 10: 16
        • Weksler BB
        • Subileau EA
        • Perriere N
        • Charneau P
        • Holloway K
        • Leveque M
        • et al.
        Blood–brain barrier-specific properties of a human adult brain endothelial cell line.
        FASEB J. 2005; 19: 1872-1874
        • Leybaert L
        • Sanderson MJ.
        Intercellular Ca2+ waves: mechanisms and function.
        Physiol Rev. 2012; 92: 1359-1392
        • Berridge MJ
        • Bootman MD
        • Roderick HL.
        Calcium signalling: dynamics, homeostasis and remodelling.
        Nat Rev Mol Cell Biol. 2003; 4: 517-529
        • Arcuino G
        • Lin JH
        • Takano T
        • Liu C
        • Jiang L
        • Gao Q
        • et al.
        Intercellular calcium signaling mediated by point-source burst release of ATP.
        Proc Natl Acad Sci USA. 2002; 99: 9840-9845
        • Koutsiaris AG
        • Tachmitzi SV
        • Batis N
        • Kotoula MG
        • Karabatsas CH
        • Tsironi E
        • et al.
        Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
        Biorheology. 2007; 44: 375-386
        • Fan Z
        • Chen D
        • Deng CX.
        Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation.
        Ultrasound Med Biol. 2014; 40: 1260-1272
        • Collis J
        • Manasseh R
        • Liovic P
        • Tho P
        • Ooi A
        • Petkovic-Duran K
        • et al.
        Cavitation microstreaming and stress fields created by microbubbles.
        Ultrasonics. 2010; 50: 273-279
        • Neppiras EA.
        Acoustic cavitation.
        Phys Rep. 1980; 61: 159-251
        • Li F
        • Yang C
        • Yuan F
        • Liao D
        • Li T
        • Guilak F
        • et al.
        Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow.
        Proc Natl Acad Sci USA. 2018; 115: E353-E362
        • Roderick HL
        • Berridge MJ
        • Bootman MD.
        Calcium-induced calcium release.
        Curr Biol. 2003; 13: R425
        • Gerhold KA
        • Schwartz MA.
        Ion channels in endothelial responses to fluid shear stress.
        Physiology (Bethesda). 2016; 31: 359-369
        • Wang S
        • Chennupati R
        • Kaur H
        • Iring A
        • Wettschureck N
        • Offermanns S.
        Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release.
        J Clin Invest. 2016; 126: 4527-4536
        • Clapham DE.
        Calcium signaling.
        Cell. 2007; 131: 1047-1058
        • Lewis AH
        • Cui AF
        • McDonald MF
        • Grandl J.
        Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels.
        Cell Rep. 2017; 19: 2572-2585
        • Chen Y
        • Song K.
        The role of thermosensitive ion channels in mammalian thermoregulation.
        Adv Exp Med Biol. 2021; 1349: 355-370
        • Lamas JA
        • Rueda-Ruzafa L
        • Herrera-Perez S.
        Ion channels and thermosensitivity: TRP, TREK, or both?.
        Int J Mol Sci. 2019; 20: 2371
        • Powell D.
        Barrier function of epithelia.
        Am J Physiol. 1981; 241: G275-G288