Advertisement
Original Contribution| Volume 49, ISSUE 5, P1058-1069, May 2023

Thermal and Acoustic Stabilization Of Volatile Phase-Change Contrast Agents Via Layer-By-Layer Assembly

  • Pedro Enrique Alcaraz
    Affiliations
    College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, AZ 85721 United States

    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States

    Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States
    Search for articles by this author
  • Skylar J. Davidson
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
    Search for articles by this author
  • Evan Shreeve
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
    Search for articles by this author
  • Rainee Meuschke
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
    Search for articles by this author
  • Marek Romanowski
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States

    Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85719 United States
    Search for articles by this author
  • Russell S. Witte
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States

    Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85719 United States

    Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States
    Search for articles by this author
  • Thomas R. Porter
    Affiliations
    Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
    Search for articles by this author
  • Terry O. Matsunaga
    Correspondence
    Corresponding author. University of Arizona, Department of Medical, Imaging Building, 216 1670 E Drachman Tucson AZ 85719
    Affiliations
    Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States

    Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States
    Search for articles by this author

      Abstract

      Objective: Phase-change contrast agents (PCCAs) are perfluorocarbon nanodroplets (NDs) that have been widely studied for ultrasound imaging in vitro, pre-clinical studies, and most recently incorporated a variant of PCCAs, namely a microbubble-conjugated microdroplet emulsion, into the first clinical studies. Their properties also make them attractive candidates for a variety of diagnostic and therapeutic applications including drug-delivery, diagnosis and treatment of cancerous and inflammatory diseases, as well as tumor-growth tracking. However, control over the thermal and acoustic stability of PCCAs both in vivo and in vitro has remained a challenge for expanding the potential utility of these agents in novel clinical applications. As such, our objective was to determine the stabilizing effects of layer-by-layer assemblies and its effect on both thermal and acoustic stability. Methods: We utilized layer-by-layer (LBL) assemblies to coat the outer PCCA membrane and characterized layering by measuring zeta potential and particle size. Stability studies were conducted by; 1) incubating the LBL-PCCAs at atmospheric pressure at 37 C and 45 C followed by; 2) ultrasound-mediated activation at 7.24 MHz and peak-negative pressures ranging from 0.71 - 5.48 MPa to ascertain nanodroplet activation and resultant microbubble persistence. The thermal and acoustic properties of decafluorobutane gas-condensed nanodroplets (DFB-NDs) layered with 6 and 10 layers of charge-alternating biopolymers, (LBL 6 NDs and LBL 10 NDs) respectively, were studied and compared to non-layered DFB-NDs. Half-life determinations were conducted at both 37 C and 45 C with acoustic droplet vaporization (ADV) measurements occurring at 23 C. Discussion: Successful application of up to 10 layers of alternating positive and negatively charged biopolymers onto the surface membrane of DFB-NDs was demonstrated. Two major claims were substantiated in this study; namely, (1) biopolymeric layering of DFB-NDs imparts a thermal stability up to an extent; and, (2) both LBL 6 NDs and LBL 10 NDs did not appear to alter particle acoustic vaporization thresholds, suggesting that the thermal stability of the particle may not necessarily be coupled with particle acoustic vaporization thresholds. Conclusion: Results demonstrate that the layered PCCAs had higher thermal stability, where the half-lifes of the LBL x NDs are significantly increased after incubation at 37 C and 45 C. Furthermore, the acoustic vaporization profiles the DFB-NDs, LBL 6 NDs, and LBL 10 NDs show that there is no statistically significant difference between the acoustic vaporization energy required to initiate acoustic droplet vaporization.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gramiak R.
        • Shah P.M.
        Echocardiography of the aortic root.
        Investigative Radiology. 1968; 3: 356-366
        • Meltzer R.S.
        • Glen Tickner E.
        • Popp R.L.
        Why do the lungs clear ultrasonic contrast?.
        Ultrasound in Medicine & Biology. 1980; 6: 263-269https://doi.org/10.1016/0301-5629(80)90022-8
        • Meltzer R.S.
        • Tickner E.G.
        • Sahines T.P.
        • Popp R.L.
        The source of ultrasound contrast effect.
        Journal of Clinical Ultrasound. 1980; 8: 121-127https://doi.org/10.1002/jcu.1870080205
        • Roelandt J.
        Contrast echocardiography.
        Ultrasound in Medicine & Biology. 1982; 8: 471-492https://doi.org/10.1016/0301-5629(82)90079-5
        • Gaffney F.
        • Lin J.-C.
        • Peshock R.M.
        • Bush L.
        • Buja L.
        Hydrogen peroxide contrast echocardiography.
        The American Journal of Cardiology. 1983; 52: 607-609https://doi.org/10.1016/0002-9149(83)90035-8
        • Stride E.
        • Saffari N.
        Microbubble ultrasound contrast agents: a review.
        Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2003; 217: 429-447
        • Rumack C.M.
        • Levine D.
        Diagnostic ultrasound.
        fifth. Elsevier Health Sciences, 2017: 53-73
      1. Banerji U., Tiu C.D., Curcean A., Gurung S., O’Leary M., Bush N., Kotopoulis S., Healey A., Kvåle S., Hilary McElwaine-Johnn H., et al. Phase i trial of acoustic cluster therapy (act) with chemotherapy in patients with liver metastases of gastrointestinal origin (activate study).2021;.

        • Christensen-Jeffries K.
        • Couture O.
        • Dayton P.A.
        • Eldar Y.C.
        • Hynynen K.
        • Kiessling F.
        • O’Reilly M.
        • Pinton G.F.
        • Schmitz G.
        • Tang M.-X.
        • Tanter M.
        • van Sloun R.J.
        Super-resolution ultrasound imaging.
        Ultrasound in Medicine & Biology. 2020; 46: 865-891https://doi.org/10.1016/j.ultrasmedbio.2019.11.013
        • Fabiilli M.L.
        • Haworth K.J.
        • Sebastian I.E.
        • Kripfgans O.D.
        • Carson P.L.
        • Fowlkes J.B.
        Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion.
        Ultrasound in Medicine & Biology. 2010; 36: 1364-1375https://doi.org/10.1016/j.ultrasmedbio.2010.04.019
        • Choi J.
        • Kim H.-Y.
        • Ju E.J.
        • Jung J.
        • Park J.
        • Chung H.-K.
        • Lee J.S.
        • Lee J.S.
        • Park H.J.
        • Song S.Y.
        • Jeong S.-Y.
        • Choi E.K.
        Use of macrophages to deliver therapeutic and imaging contrast agents to tumors.
        Biomaterials. 2012; 33: 4195-4203https://doi.org/10.1016/j.biomaterials.2012.02.022
        • Lea-Banks H.
        • O’Reilly M.A.
        • Hamani C.
        • Hynynen K.
        Localized anesthesia of a specific brain region using ultrasound-responsive barbiturate nanodroplets.
        Theranostics. 2020; 10: 2849
        • Rapoport N.Y.
        • Kennedy A.M.
        • Shea J.E.
        • Scaife C.L.
        • Nam K.-H.
        Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles.
        Journal of Controlled Release. 2009; 138: 268-276https://doi.org/10.1016/j.jconrel.2009.05.026
      2. Sixth International Nanomedicine and Drug Delivery Symposium
        • Marshalek J.P.
        • Sheeran P.S.
        • Ingram P.
        • Dayton P.A.
        • Witte R.S.
        • Matsunaga T.O.
        Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro.
        Journal of Controlled Release. 2016; 243: 69-77https://doi.org/10.1016/j.jconrel.2016.09.010
        • Matsunaga T.O.
        • Sheeran P.S.
        • Luois S.
        • Streeter J.E.
        • Mullin L.B.
        • Banerjee B.
        • Dayton P.A.
        Phase-change nanoparticles using highly volatile perfluorocarbons: Toward a platform for extravascular ultrasound imaging.
        Theranostics. 2012; 2: 1185-1198https://doi.org/10.7150/thno.4846
        • Choudhury S.A.
        • Xie F.
        • Dayton P.A.
        • Porter T.R.
        Acoustic behavior of a reactivated, commercially available ultrasound contrast agent.
        Journal of the American Society of Echocardiography. 2017; 30: 189-197https://doi.org/10.1016/j.echo.2016.10.015
        • Lentacker I.
        • De Geest B.G.
        • Vandenbroucke R.E.
        • Peeters L.
        • Demeester J.
        • De Smedt S.C.
        • Sanders N.N.
        Ultrasound-responsive polymer-coated microbubbles that bind and protect dna.
        Langmuir. 2006; 22: 7273-7278https://doi.org/10.1021/la0603828
      3. PMID: 16893226
        • Sheeran P.S.
        • Wong V.P.
        • Luois S.
        • McFarland R.J.
        • Ross W.D.
        • Feingold S.
        • Matsunaga T.O.
        • Dayton P.A.
        Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging.
        Ultrasound in Medicine & Biology. 2011; 37: 1518-1530https://doi.org/10.1016/j.ultrasmedbio.2011.05.021
        • Martin A.L.
        • Homenick C.M.
        • Xiang Y.
        • Gillies E.
        • Matsuura N.
        Polyelectrolyte coatings can control charged fluorocarbon nanodroplet stability and their interaction with macrophage cells.
        Langmuir. 2019; 35: 4603-4612https://doi.org/10.1021/acs.langmuir.8b04051
        • Sheeran P.S.
        • Luois S.
        • Dayton P.A.
        • Matsunaga T.O.
        Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.
        Langmuir. 2011; 27: 10412-10420https://doi.org/10.1021/la2013705
      4. PMID: 21744860
        • Yasu T.
        • Schmid-Schönbein G.W.
        • Cotter B.
        • DeMaria A.N.
        Flow dynamics of qw7437, a new dodecafluoropentane ultrasound contrast agent, in the microcirculation: Microvascular mechanisms for persistent tissue echo enhancement.
        Journal of the American College of Cardiology. 1999; 34: 578-586https://doi.org/10.1016/S0735-1097(99)00209-0
        • Maeda H.
        • Wu J.
        • Sawa T.
        • Matsumura Y.
        • Hori K.
        Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review.
        Journal of Controlled Release. 2000; 65: 271-284https://doi.org/10.1016/S0168-3659(99)00248-5
        • Sheeran P.S.
        • Dayton P.A.
        Phase-change contrast agents for imaging and therapy.
        Current Pharmaceutical Design. 2012; 18: 2152-2165
        • Ee S.L.
        • Duan X.
        • Liew J.
        • Nguyen Q.D.
        Droplet size and stability of nano-emulsions produced by the temperature phase inversion method.
        Chemical Engineering Journal. 2008; 140: 626-631https://doi.org/10.1016/j.cej.2007.12.016
        • Mountford P.A.
        • Borden M.A.
        On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents.
        Advances in Colloid and Interface Science. 2016; 237: 15-27https://doi.org/10.1016/j.cis.2016.08.007
        • Lin S.
        • Zhang G.
        • Leow C.H.
        • Tang M.-X.
        Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents.
        Physics in Medicine & Biology. 2017; 62: 6884-6898https://doi.org/10.1088/1361-6560/aa8076
        • Paproski R.J.
        • Forbrich A.
        • Huynh E.
        • Chen J.
        • Lewis J.D.
        • Zheng G.
        • Zemp R.J.
        Porphyrin nanodroplets: Sub-micrometer ultrasound and photoacoustic contrast imaging agents.
        Small. 2016; 12: 371-380https://doi.org/10.1002/smll.201502450
        • Yoo K.
        • Walker W.R.
        • Williams R.
        • Tremblay-Darveau C.
        • Burns P.N.
        • Sheeran P.S.
        Impact of encapsulation on in vitro and in vivo performance of volatile nanoscale phase-shift perfluorocarbon droplets.
        Ultrasound in Medicine & Biology. 2018; 44: 1836-1852https://doi.org/10.1016/j.ultrasmedbio.2018.04.015
        • Yarmoska S.K.
        • Yoon H.
        • Emelianov S.Y.
        Lipid shell composition plays a critical role in the stable size reduction of perfluorocarbon nanodroplets.
        Ultrasound in Medicine & Biology. 2019; 45: 1489-1499https://doi.org/10.1016/j.ultrasmedbio.2019.02.009
        • de Leon A.
        • Perera R.
        • Hernandez C.
        • Cooley M.
        • Jung O.
        • Jeganathan S.
        • Abenojar E.
        • Fishbein G.
        • Sojahrood A.J.
        • Emerson C.C.
        • Stewart P.L.
        • Kolios M.C.
        • Exner A.A.
        Contrast enhanced ultrasound imaging by nature-inspired ultrastable echogenic nanobubbles.
        Nanoscale. 2019; 11: 15647-15658https://doi.org/10.1039/C9NR04828F
        • Toumia Y.
        • Cerroni B.
        • Domenici F.
        • Lange H.
        • Bianchi L.
        • Cociorb M.
        • Brasili F.
        • Chiessi E.
        • D’Agostino E.
        • Van Den Abeele K.
        • Heymans S.V.
        • D’Hooge J.
        • Paradossi G.
        Phase change ultrasound contrast agents with a photopolymerized diacetylene shell.
        Langmuir. 2019; 35: 10116-10127https://doi.org/10.1021/acs.langmuir.9b01160
      5. PMID: 31042396
        • Ghorbani M.
        • Olofsson K.
        • Benjamins J.-W.
        • Loskutova K.
        • Paulraj T.
        • Wiklund M.
        • Grishenkov D.
        • Svagan A.J.
        Unravelling the acoustic and thermal responses of perfluorocarbon liquid droplets stabilized with cellulose nanofibers.
        Langmuir. 2019; 35: 13090-13099https://doi.org/10.1021/acs.langmuir.9b02132
      6. PMID: 31549511
        • Sheeran P.S.
        • Luois S.H.
        • Mullin L.B.
        • Matsunaga T.O.
        • Dayton P.A.
        Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons.
        Biomaterials. 2012; 33: 3262-3269https://doi.org/10.1016/j.biomaterials.2012.01.021
        • Ramasamy T.
        • Haidar Z.S.
        • Tran T.H.
        • Choi J.Y.
        • Jeong J.-H.
        • Shin B.S.
        • Choi H.-G.
        • Yong C.S.
        • Kim J.O.
        Layer-by-layer assembly of liposomal nanoparticles with pegylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs.
        Acta Biomaterialia. 2014; 10: 5116-5127https://doi.org/10.1016/j.actbio.2014.08.021
        • Ramasamy T.
        • Tran T.H.
        • Choi J.Y.
        • Cho H.J.
        • Kim J.H.
        • Yong C.S.
        • Choi H.-G.
        • Kim J.O.
        Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery.
        Carbohydrate polymers. 2014; 102: 653-661
        • Wu Q.
        • Mannaris C.
        • May J.P.
        • Bau L.
        • Polydorou A.
        • Ferri S.
        • Carugo D.
        • Evans N.D.
        • Stride E.
        Investigation of the acoustic vaporization threshold of lipid-coated perfluorobutane nanodroplets using both high-speed optical imaging and acoustic methods.
        Ultrasound in Medicine & Biology. 2021; 47: 1826-1843
      7. Natan A.. Fast 2d peak finder. https://github.com/adinatan/fastpeakfind; 2021. MATLAB Central File Exchange.

        • Evans D.R.
        • Parsons D.F.
        • Craig V.S.J.
        Physical properties of phase-change emulsions.
        Langmuir. 2006; 22: 9538-9545https://doi.org/10.1021/la062097u
      8. PMID: 17073477
        • Mannaris C.
        • Bau L.
        • Grundy M.
        • Gray M.
        • Lea-Banks H.
        • Seth A.
        • Teo B.
        • Carlisle R.
        • Stride E.
        • Coussios C.C.
        Microbubbles, nanodroplets and gas-stabilizing solid particles for ultrasound-mediated extravasation of unencapsulated drugs: an exposure parameter optimization study.
        Ultrasound in medicine & biology. 2019; 45: 954-967
        • Danaei M.
        • Dehghankhold M.
        • Ataei S.
        • Hasanzadeh Davarani F.
        • Javanmard R.
        • Dokhani A.
        • Khorasani S.
        • Mozafari M.
        Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.
        Pharmaceutics. 2018; 10: 57
        • Smith S.M.
        Strategies for the purification of membrane proteins.
        Protein Chromatography. Springer, 2011: 485-496
        • Lichtenberg D.
        • Ahyayauch H.
        • Goñi F.M.
        The mechanism of detergent solubilization of lipid bilayers.
        Biophysical journal. 2013; 105: 289-299
        • Shakya G.
        • Hoff S.E.
        • Wang S.
        • Heinz H.
        • Ding X.
        • Borden M.A.
        Vaporizable endoskeletal droplets via tunable interfacial melting transitions.
        Science Advances. 2020; 6https://doi.org/10.1126/sciadv.aaz7188