Method for Carotid Artery 3-D Ultrasound Image Segmentation Based on CSWin Transformer


      Precise segmentation of carotid artery (CA) structure is an important prerequisite for the medical assessment and detection of carotid plaques. For automatic segmentation of the media–adventitia boundary (MAB) and lumen–intima boundary (LIB) in 3-D ultrasound images of the CA, a U-shaped CSWin transformer (U-CSWT) is proposed. Both the encoder and decoder of the U-CSWT are composed of hierarchical CSWT modules, which can capture rich global context information in the 3-D image. Experiments were performed on a 3-D ultrasound image data set of the CA, and the results indicate that the U-CSWT performs better than other convolutional neural network (CNN)-based and CNN–transformer hybrid methods. The model yields Dice coefficients of 94.6 ± 3.0% and 90.8 ± 5.1% for the MAB and LIB in the common carotid artery (CCA) and 92.9 ± 4.9% and 89.6 ± 6.2% for MAB and LIB in the bifurcation, respectively. Our U-CSWT is expected to become an effective method for automatic segmentation of 3-D ultrasound images of CA.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Buchanan DN
        • Lindenmaier T
        • McKay S
        • Bureau Y
        • Hackam DG
        • Fenster A
        • Parraga G.
        The relationship of carotid three-dimensional ultrasound vessel wall volume with age and sex: Comparison to carotid intima–media thickness.
        Ultrasound Med Biol. 2012; 38: 1145-1153
        • Chen LC
        • Papandreou G
        • Kokkinos I
        • Murphy K
        • Yuille AL.
        DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
        IEEE Trans Pattern Anal Mach Intell. 2018; 40: 834-848
        • Chen J
        • Lu Y
        • Yu Q
        • Luo X
        • Adeli E
        • Wang Y
        • Lu L
        • Yuille AL
        • Zhou Y.
        TransUNet: Transformers make strong encoders for medical image segmentation.
        arXiv preprint arXiv:2102.04306. 2021;
        • Cheng J
        • Li H
        • Xiao F
        • Fenster A
        • Zhang X
        • He X
        • Li L
        • Ding M.
        Fully automatic plaque segmentation in 3-D carotid ultrasound images.
        Ultrasound Med Biol. 2013; 39: 2431-2446
        • Cheng J
        • Yu Y
        • Chiu B.
        Direct 3D segmentation of carotid plaques from 3D ultrasound images.
        in: Proceedings, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, New York2016: 123-126
        • Cheng J
        • Chen Y
        • Yu Y
        • Chiu B.
        Carotid plaque segmentation from three-dimensional ultrasound images by direct three-dimensional sparse field level-set optimization.
        Comput Biol Med. 2018; 94: 27-40
        • De Ruijter J
        • Muijsers JJ
        • Van de Vosse FN
        • Van Sambeek MR
        • Lopata RG.
        A generalized approach for automatic 3-D geometry assessment of blood vessels in transverse ultrasound images using convolutional neural networks.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68: 3326-3335
        • Dong X
        • Bao J
        • Chen D
        • Zhang W
        • Yu N
        • Yuan L
        • Chen D
        • Guo B.
        CSWin transformer: A general vision transformer backbone with cross-shaped windows.
        in: Proceedings, IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, New York2022: 12124-12134
        • Dosovitskiy A
        • Beyer L
        • Kolesnikov A
        • Weissenborn D
        • Zhai X
        • Unterthiner T
        • Dehghani M
        • Minderer M
        • Heigold G
        • Gelly S.
        An image is worth 16x16 words: Transformers for image recognition at scale.
        arXiv preprint arXiv:2010.11929. 2020;
        • Du X
        • Patel A
        • Anderson CS
        • Dong J
        • Ma C.
        Epidemiology of cardiovascular disease in China and opportunities for improvement: JACC international.
        J Am Coll Cardiol. 2019; 73: 3135-3147
        • Egger M
        • Spence JD
        • Fenster A
        • Parraga G.
        Validation of 3D ultrasound vessel wall volume: an imaging phenotype of carotid atherosclerosis.
        Ultrasound Med Biol. 2007; 33: 905-914
        • Gill JD
        • Ladak H
        • Steinman DA
        • Fenster A.
        Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images.
        Med Phys. 2000; 27: 1333-1342
        • Hemalatha R
        • Santhiyakumari N
        • Madheswaran M
        • Suresh S.
        Segmentation of 2D and 3D images of carotid artery on unified technology learning platform.
        Procedia Technol. 2016; 25: 12-19
        • Hossain MM
        • AlMuhanna K
        • Zhao L
        • Lal BK
        • Sikdar S.
        Semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging.
        Med Phys. 2015; 42: 2029-2043
      1. Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ. Deep networks with stochastic depth. In: Leibe B, Matas J, Sebe N, Welling M, eds. Computer vision—ECCV 2016. Lecture Notes in Computer Science, vol. 9908. Cham: Springer, 2016:646–661.

        • Jiang M
        • Spence JD
        • Chiu B.
        Segmentation of 3D ultrasound carotid vessel wall using U-Net and segmentation average network.
        in: Proceedings, 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, New York2020: 2043-2046
        • Jiang M
        • Zhao Y
        • Chiu B.
        Segmentation of common and internal carotid arteries from 3D ultrasound images based on adaptive triple loss.
        Med Phys. 2021; 48: 5096-5114
        • Lechuga-Vieco AV
        • Groult H
        • Pellico J
        • Mateo J
        • Enríquez JA
        • Ruiz-Cabello J
        • Herranz F.
        Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques.
        Nanomedicine. 2018; 14: 643-650
        • Lee CY
        • Xie S
        • Gallagher P
        • Zhang Z
        • Tu Z.
        Deeply-supervised nets.
        in: Guy L Vishwanathan SVN Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. 38. PMLR, 2015: 562-570
        • Milletari F
        • Navab N
        • Ahmadi SA.
        V-Net: Fully convolutional neural networks for volumetric medical image segmentation.
        in: Proceedings, 2016 Fourth International Conference on 3D Vision (3DV). IEEE, New York2016: 565-571
        • Mushenkova NV
        • Summerhill VI
        • Zhang D
        • Romanenko EB
        • Grechko AV
        • Orekhov AN.
        Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque.
        Int J Mol Sci. 2020; 21: 2992
        • Ronneberger O
        • Fischer P
        • Brox T.
        U-Net: Convolutional networks for biomedical image segmentation.
        in: 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015: 234-241 (Munich, October 5–9. Cham)
        • Shai I
        • Spence J D
        • Schwarzfuchs D
        • Henkin Y
        • Parraga G
        • Rudich A
        • Fenster A
        • Mallett C
        • Liel-Cohen N
        • Tirosh A
        • Bolotin A
        • Thiery J
        • Fiedler GM
        • Blüher M
        • Stumvoll M
        • Stampfer MJ
        • DIRECT Group
        Dietary intervention to reverse carotid atherosclerosis.
        Circulation. 2010; 121: 1200-1208
        • Touboul PJ
        • Hennerici M
        • Meairs S
        • Adams H
        • Amarenco P
        • Bornstein N
        • Csiba L
        • Desvarieux M
        • Ebrahim S
        • Hernandez RH.
        Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011).
        Cerebrovasc Dis. 2012; 34: 290-296
        • Ukwatta E
        • Awad J
        • Ward A
        • Buchanan D
        • Samarabandu J
        • Parraga G
        • Fenster A.
        Three-dimensional ultrasound of carotid atherosclerosis: Semiautomated segmentation using a level set-based method.
        Med Phys. 2011; 38: 2479-2493
        • Ukwatta E
        • Yuan J
        • Buchanan D
        • Chiu B
        • Awad J
        • Qiu W
        • Parraga G
        • Fenster A.
        Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets.
        Med Phys. 2013; 40052903
        • Vaswani A
        • Shazeer N
        • Parmar N
        • Uszkoreit J
        • Jones L
        • Gomez AN
        • Kaiser Ł
        • Polosukhin I.
        Attention is all you need.
        in: Advances in neural information processing systems 30 (NIPS 2017). 30. Curran Associates, Red Hook, NY2017
        • Vos T
        • Lim SS
        • Abbafati C
        • Abbas KM
        • Abbasi M
        • Abbasifard M
        • Abbasi-Kangevari M
        • Abbastabar H
        • Abd-Allah F
        • Abdelalim A.
        Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.
        Lancet. 2020; 396: 1204-1222
        • Wang X
        • Girshick R
        • Gupta A
        • He K.
        Non-local neural networks.
        in: Proceedings, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, New York2018: 7794-7803
      2. Xie Y, Zhang J, Shen C, Xia Y. 2021 CoTr: Efficiently bridging CNN and Transformer for 3D medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2021. Lecture Notes in Computer Science, vol. 12903. Cham: Springer, 2021:171–180.

        • Zhao H
        • Shi J
        • Qi X
        • Wang X
        • Jia J.
        2017 Pyramid scene parsing network.
        in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New York2017: 2881-2890
        • Zhou R
        • Fenster A
        • Xia Y
        • Spence JD
        • Ding M.
        Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images.
        Med Phys. 2019; 46: 3180-3193
        • Zhou R
        • Guo F
        • Azarpazhooh MR
        • Spence JD
        • Ukwatta E
        • Ding M
        • Fenster A.
        A voxel-based fully convolution network and continuous max-flow for carotid vessel-wall-volume segmentation from 3D ultrasound images.
        IEEE Trans Med Imaging. 2020; 39: 2844-2855
        • Zhou R
        • Ma W
        • Fenster A
        • Ding M.
        U-Net based automatic carotid plaque segmentation from 3D ultrasound images.
        in: Mori K Hahn HK Medical Imaging 2019: Computer-aided diagnosis. SPIE Proceedings. 10950. SPIE, Bellingham, WA2019