Advertisement

Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review

  • Sophie A. Armstrong
    Correspondence
    Address correspondence to: Sophie A. Armstrong, CREATElab (Lab 2, Level 3), Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Australia, 3004
    Affiliations
    Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia

    Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
    Search for articles by this author
  • Rezan Jafary
    Affiliations
    Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia

    Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
    Search for articles by this author
  • John S. Forsythe
    Affiliations
    Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
    Search for articles by this author
  • Shaun D. Gregory
    Affiliations
    Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia

    Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
    Search for articles by this author

      Abstract

      Ultrasound-guided needle interventions are common procedures in medicine, and tissue-mimicking phantoms are widely used for simulation training to bridge the gap between theory and clinical practice in a controlled environment. This review assesses tissue-mimicking materials from 24 studies as candidates for a high-fidelity ultrasound phantom, including methods for evaluating relevant acoustic and mechanical properties and to what extent the reported materials mimic the superficial layers of biological tissue. Speed of sound, acoustic attenuation, Young's modulus, hardness, needle interaction forces, training efficiency and material limitations were systematically evaluated. Although gelatin and agar have the closest acoustic values to tissue, mechanical properties are limited, and strict storage protocols must be employed to counteract dehydration and microbial growth. Polyvinyl chloride (PVC) has superior mechanical properties and is a suitable alternative if durability is desired and some ultrasound realism to human tissue may be sacrificed. Polyvinyl alcohol (PVA), while also requiring hydration, performs well across all categories. Furthermore, we propose a framework for the evaluation of future ultrasound-guided needle intervention tissue phantoms to increase the fidelity of training programs and thereby improve clinical performance.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahmed OMA
        • Azher I
        • Gallagher AG
        • Breslin DS
        • O'Donnell BD
        • Shorten GD
        Deliberate practice using validated metrics improves skill acquisition in performance of ultrasound-guided peripheral nerve block in a simulated setting.
        J Clin Anesth. 2018; 48: 22-27
        • American Institute of Ultrasound in Medicine (AIUM)
        Methods for specifying acoustic properties of tissue mimicking phantoms and objects.
        AIUM Technical Standards Committee, Stage I. Laurel, MD1995
        • Baba M
        • Matsumoto K
        • Yamasaki N
        • Shindo H
        • Yano H
        • Matsumoto M
        • Otsubo R
        • John Lawn M
        • Matsuo N
        • Yamamoto I
        • Hidaka S
        • Nagayasu T
        Development of a tailored thyroid gland phantom for fine-needle aspiration cytology by three-dimensional printing.
        J Surg Educ. 2017; 74: 1039-1046
        • Brewin MP
        • Pike LC
        • Rowland DE
        • Birch MJ.
        The acoustic properties, centered on 20 MHz, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
        Ultrasound Med Biol. 2008; 34: 1292-1306
        • Browne JE
        • Ramnarine KV
        • Watson AJ
        • Hoskins PR.
        Assessment of the acoustic properties of common tissue-mimicking test phantoms.
        Ultrasound Med Biol. 2003; 29: 1053-1060
        • Browne JE
        • Cannon LM
        • McDermott R
        • Ryan M
        • Fagan AJ.
        Pilot investigation into the use of an anthropomorphic breast sonography phantom as a training and assessment tool.
        Ultrasound Med Biol. 2017; 43: 2733-2740
        • Browne JE
        • Gu C
        • Fazzio RT
        • Fagan AJ
        • Tradup DJ
        • Hangiandreou NJ.
        Use of novel anthropomorphic breast ultrasound phantoms for radiology resident education.
        J Am Coll Radiol. 2019; 16: 211-218
        • Buchanan S
        • Moore J
        • Lammers D
        • Baxter J
        • Peters T.
        Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures.
        in: Holmes III, DR Wong KH Proc SPIE 8316, Medical Imaging 2012: Image-guided procedures, robotic interventions, and modeling. 83262B, 2012 (17 February)
        • Cabrelli LC
        • Grillo FW
        • Sampaio DRT
        • Carneiro AAO
        • Pavan TZ.
        Acoustic and elastic properties of glycerol in oil-based gel phantoms.
        Ultrasound Med Biol. 2017; 43: 2086-2094
        • Cafarelli A
        • Verbeni A
        • Poliziani A
        • Dario P
        • Menciassi A
        • Ricotti L.
        Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures.
        Acta Biomater. 2017; 49: 368-378
        • Cannon LM
        • Fagan AJ
        • Browne JE.
        Novel tissue mimicking materials for high frequency breast ultrasound phantoms.
        Ultrasound Med Biol. 2011; 37: 122-135
        • Chen AI
        • Balter ML
        • Chen MI
        • Gross D
        • Alam SK
        • Maguire TJ
        • Yarmush ML.
        Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.
        Med Phys. 2016; 43: 3117-3131
        • Chetlen AL
        • Mendiratta-Lala M
        • Probyn L
        • Auffermann WF
        • DeBenedectis CM
        • Marko J
        • Pua BB
        • Sato TS
        • Little BP
        • Dell CM
        • Sarkany D
        • Gettle LM.
        Conventional medical education and the history of simulation in radiology.
        Acad Radiol. 2015; 22: 1252-1267
        • Cournane S
        • Cannon L
        • Browne JE
        • Fagan AJ.
        Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA–cryogel phantom with optimal acoustic and mechanical properties.
        Phys Med Biol. 2010; 55: 5965-5983
        • Culjat MO
        • Goldenberg D
        • Tewari P
        • Singh RS.
        A review of tissue substitutes for ultrasound imaging.
        Ultrasound Med Biol. 2010; 36: 861-873
        • de Carvalho IM
        • De Matheo LL
        • Costa Júnior JFS
        • Borba CdM
        • von Krüger MA
        • Infantosi AFC
        • Pereira WCdA
        Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.
        Ultrasonics. 2016; 70: 98-106
        • de Jong TL
        • Pluymen LH
        • van Gerwen DJ
        • Kleinrensink GJ
        • Dankelman J
        • van den Dobbelsteen JJ.
        PVA matches human liver in needle-tissue interaction.
        J Mech Behav Biomed Mater. 2017; 69: 223-228
        • Doyle AJ
        • Sullivan F
        • Walsh J
        • King DM
        • Cody D
        • Browne JE.
        Development and preliminary evaluation of an anthropomorphic trans-rectal ultrasound prostate brachytherapy training phantom.
        Ultrasound Med Biol. 2021; 47: 833-846
        • Doyle AJ
        • Cody D
        • King DM
        • Sullivan PFJ
        • Browne JE.
        Use of a novel anthropomorphic prostate simulator in a prostate brachytherapy transrectal ultrasound imaging workshop for medical physicists.
        Phys Med. 2022; 95: 156-166
        • Duck FA
        Physical properties of tissues.
        Academic Press, London1990: 73-135
        • Evans LV
        • Dodge KL
        • Shah TD
        • Kaplan LJ
        • Siegel MD
        • Moore CL
        • Hamann CJ
        • Lin Z
        • D'onofrio G
        Simulation training in central venous catheter insertion: improved performance in clinical practice.
        Acad Med. 2010; 85: 1462-1469
        • Geerligs M
        • van Breemen L
        • Peters G
        • Ackermans P
        • Baaijens F
        • Oomens C.
        In vitro indentation to determine the mechanical properties of epidermis.
        J Biomech. 2011; 44: 1176-1181
        • Grasselli G
        • Pesenti A
        • Marcolin R
        • Patroniti N
        • Isgró S
        • Tagliabue P
        • Lucchini A
        • Fumagalli R.
        Percutaneous vascular cannulation for extracorporeal life support (ECLS): A modified technique.
        Int J Artif Organs. 2010; 33: 553-557
        • Hendriks FM
        • Brokken D
        • Oomens CW
        • Bader DL
        • Baaijens FP.
        The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments.
        Med Eng Phys. 2006; 28: 259-266
        • Hungr N
        • Long JA
        • Vincent B
        • Troccaz J.
        A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures.
        Med Phys. 2012; 39: 2031-2041
        • Hwang J
        • Ramella-Roman JC
        • Nordstrom R.
        Introduction: Feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices.
        Biomed Opt Express. 2012; 3: 1399-1403
        • Jafary R
        • Armstrong S
        • Byrne T
        • Stephens A
        • Pellegrino V
        • Gregory SD.
        Fabrication and characterization of tissue-mimicking phantoms for ultrasound-guided cannulation training.
        ASAIO J. 2022; 68: 940-948
        • Jiang S
        • Liu S
        • Feng W.
        PVA hydrogel properties for biomedical application.
        J Mech Behav Biomed Mater. 2011; 4: 1228-1233
        • Jiang S
        • Li P
        • Yu Y
        • Liu J
        • Yang Z.
        Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics.
        J Biomech. 2014; 47: 3344-3353
        • Leong SS
        • Wong JHD
        • Md Shah MN
        • Vijayananthan A
        • Jalalonmuhali M
        • Mohd Sharif NH
        • Abas NK
        • Ng KH
        Stiffness and anisotropy effect on shear wave elastography: A phantom and in vivo renal study.
        Ultrasound Med Biol. 2020; 46: 34-45
        • Li W
        • Belmont B
        • Greve JM
        • Manders AB
        • Downey BC
        • Zhang X
        • Xu Z
        • Guo D
        • Shih A.
        Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties.
        Med Phys. 2016; 43: 5577-5592
        • Madsen EL
        • Hobson MA
        • Frank GR
        • Shi H
        • Jiang J
        • Hall TJ
        • Varghese T
        • Doyley MM
        • Weaver JB.
        Anthropomorphic breast phantoms for testing elastography systems.
        Ultrasound Med Biol. 2006; 32: 857-874
        • Makdisi G
        • Wang IW.
        Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology.
        J Thorac Dis. 2015; 7: E166-E176
        • McKee CT
        • Last JA
        • Russell P
        • Murphy CJ.
        Indentation versus tensile measurements of Young's modulus for soft biological tissues.
        Tissue Eng Part B Rev. 2011; 17: 155-164
        • Mokhtari-Dizaji M.
        Tissue-mimicking materials for teaching sonographers and evaluation of their specifications after three years.
        Ultrasound Med Biol. 2001; 27: 1713-1716
        • Moran CM
        • Bush NL
        • Bamber JC.
        Ultrasonic propagation properties of excised human skin.
        Ultrasound Med Biol. 1995; 21: 1177-1190
        • Ng Y
        • Chi-Lun L.
        A realistic phantom for ultrasound-guided central venous cannulation. Paper No. DMD2020-9007.
        in: 2020 Design of Medical Devices Conference. Minneapolis, MN, USA, 2020 (April 6–9)
        • Okamura AM
        • Simone C
        • Leary MDO.
        Force modeling for needle insertion into soft tissue.
        IEEE Trans Biomed Eng. 2004; 51: 1707-1716
        • Pailler-Mattei C
        • Bec S
        • Zahouani H.
        In vivo measurements of the elastic mechanical properties of human skin by indentation tests.
        Med Eng Phys. 2008; 30: 599-606
        • Rippey JC
        • Blanco P
        • Carr PJ.
        An affordable and easily constructed model for training in ultrasound-guided vascular access.
        J Vasc Access. 2015; 16: 422-427
        • Rupprecht L
        • Lunz D
        • Philipp A
        • Lubnow M
        • Schmid C.
        Pitfalls in percutaneous ECMO cannulation.
        Heart Lung Vessel. 2015; 7: 320-326
        • Sanchez-Glanville C
        • Brindle ME
        • Spence T
        • Blackwood J
        • Drews T
        • Menzies S
        • Lopushinsky SR.
        Evaluating the introduction of extracorporeal life support technology to a tertiary-care pediatric institution: Smoothing the learning curve through interprofessional simulation training.
        J Pediatr Surg. 2015; 50: 798-804
        • Schaheen BW
        • Thiele RH
        • Isbell JM.
        Extracorporeal life support for adult cardiopulmonary failure.
        Best Pract Res Clin Anaesthesiol. 2015; 29: 229-239
        • Selame LA
        • Risler Z
        • Zakaria SJ
        • Hughes LP
        • Lewiss RE
        • Kehm K
        • Goodsell K
        • Kalwani R
        • Mirsch D
        • Kluger SB
        • Au A.
        A comparison of homemade vascular access ultrasound phantom models for peripheral intravenous catheter insertion.
        J Vasc Access. 2021; 22: 891-897
        • Sun C
        • Pye SD
        • Browne JE
        • Janeczko A
        • Ellis B
        • Butler MB
        • Sboros V
        • Thomson AJW
        • Brewin MP
        • Earnshaw CH
        • Moran CM.
        The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications.
        Ultrasound Med Biol. 2012; 38: 1262-1270
        • Tan CY
        • Statham B
        • Marks R
        • Payne PA.
        Skin thickness measurement by pulsed ultrasound; its reproducibility, validation and variability.
        Br J Dermatol. 1982; 106: 657-667
        • Thouvenot A
        • Poepping T
        • Peters T
        • Chen EC.
        Characterization of various tissue mimicking materials for medical ultrasound imaging.
        in: Kontos D Flohr TG SPIE Proceedings Vol. 9783. Medical imaging. Physics of medical imaging, 2016
        • Ustbas B
        • Kilic D
        • Bozkurt A
        • Aribal ME
        • Akbulut O.
        Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms.
        Ultrasonics. 2018; 88: 9-15
        • van Gerwen DJ
        • Dankelman J
        • van den Dobbelsteen JJ.
        Needle–tissue interaction forces—A survey of experimental data.
        Med Eng Phys. 2012; 34: 665-680
        • Vieira SL
        • Pavan TZ
        • Junior JE
        • Carneiro AAO.
        Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom.
        Ultrasound Med Biol. 2013; 39: 2477-2484
        • Vogt WC
        • Jia C
        • Wear KA
        • Garra BS
        • Joshua Pfefer T
        Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.
        J Biomed Opt. 2016; 21101405
        • Wang Y
        • Tai BL
        • Yu H
        • Shih AJ.
        Silicone-based tissue-mimicking phantom for needle insertion simulation.
        J Med Devices. 2014; 8021001
        • Wells M.
        The role of phantoms and simulation in teaching ultrasound skills in emergency medicine.
        in: Connolly JA Dean AJ Hoffman B Jarman RD Emergency point-of-care ultrasound. 2nd ed. Wiley, New York2017: 479-486
        • Wells M
        • Goldstein L.
        The polony phantom: A cost-effective aid for teaching emergency ultrasound procedures.
        Int J Emerg Med. 2010; 3: 115-118