Advertisement

Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review

      Abstract

      Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abrunhosa VM
        • Soares CP
        • Batista Possidonio AC
        • Alvarenga AV
        • Costa-Felix RPB
        • Costa ML
        • Mermelstein C.
        Induction of skeletal muscle differentiation in vitro by therapeutic ultrasound.
        Ultrasound Med Biol. 2014; 40: 504-512
        • Agnes JE
        Eletrotermoterapia: Teoria e Prática.
        Editora Orium, Santa Maria, RS2006
        • Artilheiro PP
        • Oliveira EN
        • Viscardi CS
        • Martins MD
        • Bussadori SK
        • Fernandes KPS
        • Mesquita-Ferrari RA.
        Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12.
        Fisioter Pesquisa. 2010; 17 (2010): 167-172
        • Baldan CS.
        Influência do tempo de irradiação da terapia por ultrassom sobre o tecido conjuntivo no processo de reparação muscular de ratos 2012 Tese (Doutorado em Fisiopatologia Experimental)—Faculdade de Medicina.
        Université de São Paulo, São Paulo2013
        • Bassoli DA.
        Avaliação dos efeitos do ultra-som pulsado de baixa intensidade na regeneração de músculos esqueléticos com vistas à aplicabilidade em clínica fisioterapêutica. 2001 Dissertação (Mestrado em Bioengenharia)—Bioengenharia.
        Universidade de São Paulo, São Carlos, 2001
        • Bennett AF.
        Temperature and muscle.
        J Exp Biol. 1985; 115: 333-344
        • Bertin LD.
        Análise da Viabilidade Celular e Expressão Gênica após Terapia Ultrassônica Contínua em Células Fibroblásticas. L929 2018 Dissertação (Mestrado em Ciências da Reabilitação).
        Universidade Estadual de Londrina e Unopar, Londrina, Paraná2018
        • Borges FS
        Dermato-Funcional: Modalidades Terapêuticas nas Disfunções Estéticas.
        Editora Phorte, São Paulo2006
        • Chan YS
        • Li Y
        • Foster W
        • Fu FH
        • Huard J.
        The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury.
        Am J Sports Med. 2005; 33: 43-51
        • Chan YS
        • Hsu KY
        • Kuo CH
        • Lee SD
        • Chen SC
        • Chen WJ
        • Ueng SWN.
        Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: An in vitro and in vivo study.
        Ultrasound Med Biol. 2010; 36: 743-751
        • Cheng K
        • Xia P
        • Lin Q
        • Shen S
        • Gao M
        • Ren S
        • Li X.
        Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes.
        Ultrasound Med Biol. 2014; 40: 1609-1618
        • Chongsatientam A
        • Yimlamai T.
        Therapeutic pulsed ultrasound promotes revascularization and functional recovery of rat skeletal muscle after contusion injury.
        Ultrasound Med Biol. 2016; 42: 2938-2949
        • Chung SL
        • Pounder NM
        • de Ana FJ
        • Qin L
        • Sui Leung K
        • Cheung WH
        Fracture healing enhancement with low intensity pulsed ultrasound at a critical application angle.
        Ultrasound Med Biol. 2011; 37: 1120-1133
        • Deasy BM
        • Peterson ZQ
        • Greenberger JS
        • Huard J.
        Mechanisms of muscle stem cell expansion with cytokines.
        Stem Cells. 2002; 20: 50-60
        • Dinno MA
        • Dyson M
        • Young SR
        • Mortimer AJ
        • Hart J
        • Crum LA.
        The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound.
        Phys Med Biol. 1989; 34: 1543-1552
        • Draper DO
        • Castel JC
        • Castel D.
        Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound.
        J Orthop Sports Phys Ther. 1995; 22: 142-150
        • Durigan JLQ
        • Cancelliero KM
        • Reis MS
        • Dias CNK
        • Graciotto DR
        • da Silva CA
        • Polacow MLO.
        Mecanismos de interação do ultra-som terapêutico com tecidos biológicos TT—Mechanisms of therapeutical ultrasound interaction with biological tissues.
        Fisioter Bras. 2006; 7: 142-148
        • Dyson M.
        Non-thermal cellular effects of ultrasound.
        Br J Cancer. 1982; 45: 165-171
        • Faganello FR.
        Ação do ultra-som terapêutico no processo de regeneração do músculo esquelético 2003 xiv, 86 f. Dissertação (mestrado).
        Universidade Estadual Paulista, Instituto de Biociências de Rio Claro, 2003
        • Fantinati MS
        • Mendonça DEO
        • Fantinati AMM
        • dos Santos BF
        • Reis JCO
        • Afonso CL
        • Vinaud MC
        • Lino Júnior RDS
        Low intensity ultrasound therapy induces angiogenesis and persistent inflammation in the chronic phase of the healing process of third degree burn wounds experimentally induced in diabetic and non-diabetic rats.
        Acta Cir Brasil. 2016; 31: 463-471
        • Feng L
        • Liu X
        • Cao H
        • Qin L
        • Hou W
        • Wu L.
        A comparison of 1- and 32-MHz low-intensity pulsed ultrasound on osteogenesis on porous titanium alloy scaffolds: An in vitro and in vivo study.
        J Ultrasound Med. 2019; 38: 191-202
        • Freitas LS
        • Freitas TP
        • Silveira PC
        • Rocha LG
        • Pinho RA
        • Streck EL.
        Effect of therapeutic pulsed ultrasound on parameters of oxidative stress in skeletal muscle after injury.
        Cell Biol Int. 2007; 31: 482-488
        • Garrett CL
        • Draper DO
        • Knight KL.
        Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound treatments.
        J Athl Train. 2000; 35: 50-55
        • George NT
        • Daniel TL.
        Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output.
        J Exp Biol. 2011; 214: 894-900
        • Gouvêa C
        • Vieiral P
        • Amara A
        Efeito Do Ultra-Som Na Recuperação De Músculo Tibial Anterior De Rato Lesado.
        R Un Alfenas. 1998; 4: 165-173
        • Harrison A
        • Lin S
        • Pounder N
        • Mikuni-Takagaki Y.
        Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair.
        Ultrasonics. 2016; 70: 45-52
        • Ikeda K
        • Takayama T
        • Suzuki N
        • Shimada K
        • Otsuka K
        • Ito K.
        Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells.
        Life Sci. 2006; 79: 1936-1943
        • Iwanabe Y
        • Masaki C
        • Tamura A
        • Tsuka S
        • Mukaibo T
        • Kondo Y
        • Hosokawa R.
        The effect of low-intensity pulsed ultrasound on wound healing using scratch assay in epithelial cells.
        J Prosthodontic Res. 2016; 60: 308-314
        • Johns LD.
        Nonthermal effects of therapeutic ultrasound: The frequency resonance hypothesis.
        J Athl Train. 2002; 37: 293-299
        • Keller S
        • Bruce M
        • Averkiou MA.
        Ultrasound imaging of microbubble activity during sonoporation pulse sequences.
        Ultrasound Med Biol. 2019; 45: 833-845
        • Kitchen S
        Eletroterapia: Prática Baseada em Evidências.
        2nd ed. Manole, Barueri, Brazil2003
        • Kobayashi Y
        • Sakai D
        • Iwashina T
        • Iwabuchi S
        • Mochida J.
        Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line.
        Eur Cells Mater. 2009; 17: 15-22
        • Kokubu T
        • Matsui N
        • Fujioka H
        • Tsunoda M
        • Mizuno K.
        Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts.
        Biochem Biophys Res Commun. 1999; 256: 284-287
        • Li J
        • Zhang Q
        • Ren C
        • Wu X
        • Zhang Y
        • Bai X
        • Lin Y
        • Li M
        • Fu J
        • Kopylov P
        • Wang S
        • Yu T
        • Wang N
        • Xu C
        • Zhang Y
        • Yang B.
        Low-intensity pulsed ultrasound prevents the oxidative stress induced endothelial-mesenchymal transition in human aortic endothelial cells.
        Cell Physiol Biochem. 2018; 45 (1350–136)
        • Li X
        • Li X
        • Lin J
        • Sun X
        • Ding Q.
        Exosomes derived from low-intensity pulsed ultrasound-treated dendritic cells suppress tumor necrosis factor–induced endothelial inflammation.
        J Ultrasound Med. 2019; 38: 2081-2091
        • Liu S
        • Zhou M
        • Li J
        • Hu B
        • Jiang D
        • Huang H
        • Song J.
        LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway.
        J Periodontal Res. 2020; 55: 125-140
        • Locke M.
        The cellular stress response to exercise: Role of stress proteins.
        Exerc Sport Sci Rev. 1997; 25: 105-136
        • Louw TM
        • Budhiraja G
        • Viljoen HJ
        • Subramanian A.
        Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold.
        Ultrasound Med Biol. 2013; 39: 1303-1319
        • Manaka S
        • Tanabe N
        • Kariya T
        • Naito M
        • Takayama T
        • Nagao M
        • Liu D
        • Ito K
        • Maeno M
        • Suzuki N
        • Miyazaki M.
        Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells.
        FEBS Lett. 2015; 589: 310-318
        • Maxwell L.
        Therapeutic ultrasound: Its effects on the cellular and molecular mechanisms of inflammation and repair.
        Physiotherapy. 1992; 78: 421-426
        • Miller DL
        • Smith NB
        • Bailey MR
        • Czarnota GJ
        • Hynynen K
        • Makin IRS.
        Overview of therapeutic ultrasound applications and safety considerations.
        J Ultrasound Med. 2012; 31: 623-634
        • Montalti CS
        • Souza NVCKL
        • Rodrigues NC
        • Fernandes KR
        • Toma RL
        • Renno ACM.
        Effects of low-intensity pulsed ultrasound on injured skeletal muscle.
        Braz J Phys Ther. 2013; 17: 343-350
        • Mortimer AJ
        • Dyson M.
        The effect of therapeutic ultrasound on calcium uptake in fibroblasts.
        Ultrasound Med Biol. 1988; 14: 499-506
        • Mukai S
        • Ito H
        • Nakagawa Y
        • Akiyama H
        • Miyamoto M
        • Nakamura T.
        Transforming growth factor-β1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes.
        Ultrasound Med Biol. 2005; 31: 1713-1721
        • Nagata K
        • Nakamura T
        • Fujihara S
        • Tanaka E.
        Ultrasound modulates the inflammatory response and promotes muscle regeneration in injured muscles.
        Ann Biomed Eng. 2013; 41: 1095-1105
        • Nakamura T
        • Fujihara S
        • Katsura T
        • Yamamoto K
        • Inubushi T
        • Tanimoto K
        • Tanaka E.
        Effects of low-intensity pulsed ultrasound on the expression and activity of hyaluronan synthase and hyaluronidase in IL-1β-stimulated synovial cells.
        Ann Biomed Eng. 2010; 38: 3363-3370
        • Nakao J
        • Fujii Y
        • Kusuyama J
        • Bandow K
        • Kakimoto K
        • Ohnishi T
        • Matsuguchi T.
        Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation.
        Bone. 2014; 58: 17-25
        • Naruse K
        • Mikuni-Takagaki Y
        • Azuma Y
        • Ito M
        • Oota T
        • Kameyama KZ
        • Itoman M.
        Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound.
        Biochem Biophys Res Commun. 2000; 268: 216-220
        • Naruse K
        • Miyauchi A
        • Itoman M
        • Mikuni-Takagaki Y.
        Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound.
        J Bone Mineral Res. 2003; 18: 360-369
        • Park H
        • Yip MC
        • Chertok B
        • Kost J
        • Kobler JB
        • Langer R
        • Zeitels SM.
        Indirect low-intensity ultrasonic stimulation for tissue engineering.
        J Tissue Eng. 2010; 1: 1-9
        • Piedade MCB
        • Caldini ETEG.
        Avaliação estrutural, estereológica e biomecânica do efeito da aplicação do ultrassom no reparo da lesão lacerativa experimental do gastrocnêmio de rato 2010.
        Universidade de São Paulo, São Paulo2010 (Available at:) (accessed on September 15th, 2021)
        • Rantanen J
        • Thorsson O
        • Wollmer P
        • Hurme T
        • Kalimo H.
        Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury.
        Am J Sports Med. 1999; 27: 54-59
        • Reher P
        • Doan N
        • Bradnock B
        • Meghji S
        • Harris M.
        Effect of ultrasound on the production of IL-8, basic FGF and VEGF.
        Cytokine. 1999; 11: 416-423
        • Sakamoto J
        • Nakano J
        • Kataoka H
        • Origuchi T
        • Yoshimura T
        • Okita M.
        Continuous therapeutic ultrasound inhibits progression of disuse atrophy in rat gastrocnemius muscles.
        J Phys Ther Sci. 2012; 24: 443-447
        • Speed CA.
        Therapeutic ultrasound in soft tissue lesions.
        Rheumatology. 2001; 40: 1331-1336
        • St Pierre BA
        • Tidball JG
        Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension.
        J Appl Physiol. 1994; 77: 290-297
        • Szelenyi ER
        • Urso ML.
        Time-course analysis of injured skeletal muscle suggests a critical involvement of ERK1/2 signaling in the acute inflammatory response.
        Muscle Nerve. 2012; 45: 552-561
        • Tang CH
        • Yang R
        • Sen Huang TH
        • Lu DY
        • Chuang WJ
        • Huang TF
        • Fu WM
        Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts.
        Mol Pharmacol. 2006; 69: 2047-2057
        • Ter Haar G
        Therapeutic ultrasound.
        Eur J Ultrasound. 1999; 9: 3-9
        • Ter Haar G
        • Shaw A
        • Pye S
        • Ward B
        • Bottomley F
        • Nolan R
        • Coady AM
        Guidance on reporting ultrasound exposure conditions for bio-effects studies.
        Ultrasound Med Biol. 2011; 37: 177-183
        • Vilhena NAP.
        Ultrasound assisted oncolytic virotherapy: In vitro and in vivo studies. Dissertation (Mestrado Integrado em Engenharia Biomédica e Biofísica)—Engenharia Biomédica e Biofísica.
        Faculdade de Ciências, Universidade de Lisboa, Lisboa2015
        • Yang KH
        • Parvizi J
        • Wang SJ
        • Lewallen DG
        • Kinnick RR
        • Greenleaf JF
        • Bolander ME.
        Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model.
        J Orthop Res. 1996; 14 (1996): 802-809
        • Yang B
        • Li M
        • Lei H
        • Xu Y
        • Li H
        • Gao Z
        • Guan R
        • Xin Z.
        Low intensity pulsed ultrasound influences the myogenic differentiation of muscle satellite cells in a stress urinary incontinence rat model.
        Urology. 2018; 123 (297e1–297e8)
        • Young SR
        • Dyson M.
        The effect of therapeutic ultrasound on angiogenesis.
        Ultrasound Med Biol. 1990; 16: 261-269
        • Wessling KC
        • DeVane DA
        • Hylton CR.
        Effects of static stretch versus static stretch and ultrasound combined on triceps surae muscle extensibility in healthy women.
        Phys Ther. 1987; 67: 674-679
        • Zhang X
        • Hu B
        • Sun J
        • Li J
        • Liu S
        • Song J.
        Inhibitory effect of low-intensity pulsed ultrasound on the expression of lipopolysaccharide-induced inflammatory factors in U937 cells.
        J Ultrasound Med. 2017; 36: 2419-2429
        • Zheng C
        • Wu SM
        • Lian H
        • Lin YZ
        • Zhuang R
        • Thapa S
        • Chen QZ
        • Chen YF
        • Lin JF.
        Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways.
        J Cell Mol Med. 2019; 23: 1963-1975
        • Ziskin MC.
        Applications of ultrasound in medicine—Comparison with other modalities.
        in: Repacholi MH Grandolfo M Rindi A Ultrasound: Medical applications, biological effects and hazard potential. Plenum Press, New York1987: 49-61
        • Zuo J
        • Zhen J
        • Wang F
        • Li Y
        • Zhou Z.
        Effect of Low-intensity pulsed ultrasound on the expression of calcium ion transport-related proteins during tertiary dentin formation.
        Ultrasound Med Biol. 2018; 44: 223-233