Acoustic Detection of Retained Perfluoropropane Droplets Within the Developing Myocardial Infarct Zone


      Perfluoropropane droplets (PDs) cross endothelial barriers and can be acoustically activated for selective myocardial extravascular enhancement following intravenous injection (IVI). Our objective was to determine how to optimally activate extravascular PDs for transthoracic ultrasound-enhanced delineation of a developing scar zone (DSZ). Ultrafast-frame-rate microscopy was conducted to determine the effect of pulse sequence on the threshold of bubble formation from PDs. In vitro studies were subsequently performed at different flow rates to determine acoustic activation and inertial cavitation thresholds for a PD infusion using multipulse fundamental non-linear or single-pulse harmonic imaging. IVIs of PDs were given in 9 rats and 10 pigs following prolonged left anterior descending ischemia to detect and quantify PD kinetics within the DSZ. A multipulse sequence had a lower myocardial index threshold for acoustic activation by ultrafast-frame-rate microscopy. Acoustic activation was observed at a myocardial index ≥0.4 below the inertial cavitation threshold for both pulse sequences. In rats, confocal microscopy and serial acoustic activation imaging detected higher droplet presence (relative to remote regions) within the DSZ at 3 min post-IVI. Transthoracic high-mechanical-index impulses with fundamental non-linear imaging in pigs at this time post-IVI resulted in selective contrast enhancement within the DSZ.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Arena CB
        • Novell A
        • Sheeran PS
        • Puett C
        • Moyer LC
        • Dayton PA.
        Dual-frequency acoustic droplet vaporization detection for medical imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62: 1623-1633
        • Biesbroek PS
        • Amier RP
        • Teunissen PFA
        • Hofman MBM
        • Robbers LFHJ
        • van de Ven PM
        • Beek AM
        • van Rossum AC
        • van Royen N
        • Nijveldt R.
        Changes in remote myocardial tissue after acute myocardial infarction and its relation to cardiac remodeling: A CMR T1 mapping study.
        PLoS One. 2017; 12e0180115
        • Burgess MT
        • Porter TM.
        Acoustic cavitation-mediated delivery of small interfering ribonucleic acids with phase-shift nano-emulsions.
        Ultrasound Med Biol. 2015; 41: 2191-2201
        • Chandra R
        • Baumann FG
        • Goldman RA.
        Myocardial reperfusion, a cause of ischemic injury during cardiopulmonary bypass.
        Surgery. 1976; 80: 266-276
        • Chen X
        • Wang J
        • Versluis M
        • de Jong N
        • Villanueva FS.
        Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects.
        Rev Sci Instrum. 2013; 84063701
        • Choudhury SA
        • Xie F
        • Dayton PA
        • Porter TR.
        Acoustic behavior of a reactivated, commercially available ultrasound contrast agent.
        J Am Soc Echocardiogr. 2017; 30: 189-197
        • Choudhury S
        • Xie F
        • Kutty S
        • Lof J
        • Stolze E
        Porter TR Selective infarct zone imaging with intravenous acoustically activated droplets.
        PLoS One. 2018; 13e0207486
        • Datta S
        • Coussios C
        • McAdory LE
        • Porter T
        • De Courten-Myers G
        • Holland CK.
        Correlation of cavitation with ultrasound enhancement of thrombolysis.
        Ultrasound Med Biol. 2006; 32: 1257-1267
        • Dongaonkar RM
        • Stewart RH
        • Geissler HJ
        • Laine GA.
        Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function.
        Cardiovascular Res. 2010; 87: 331-339
        • El Kadi S
        • Qian L
        • Zeng P
        • Lof J
        • Stolze E
        • Xie F
        • van Rossum AC
        • Kamp O
        • Everbach C
        • Porter TR.
        Efficacy of sonothrombolysis using acoustically activated perflutren nanodroplets versus perflutren microbubbles.
        Ultrasound Med Biol. 2021; 47: 1814-1825
        • Helfield B
        • Chen X
        • Watkins SC
        • Villanueva FS.
        Biophysical insight into mechanisms of sonoporation.
        Proc Natl Acad Sci USA. 2016; 113: 9983-9988
        • Heusch G
        • Skyschally A
        • Schulz R.
        The in-situ pig heart with regional ischemia/reperfusion—Ready for translation.
        J Mol Cell Cardiol. 2011; 50: 951-963
        • Jones SP
        • Tang XL
        • Guo Y
        • Steenbergen C
        • Lefer DJ
        • Kukreja RC
        • Kong M
        • Li Q
        • Bhushan S
        • Zhu X
        • Du J
        • Nong Y
        • Stowers HL
        • Kondo K
        • Hunt GN
        • Goodchild TT
        • Orr A
        • Chang CC
        • Ockaili R
        • Salloum FN
        • Bolli R.
        The NHLBI-sponsored consortium for preclinical assessment of cardioprotective therapies (CAESER): A new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs.
        Circ Res. 2015; 116: 572-586
        • Kim J
        • DeRuiter RM
        • Goel L
        • Xu Z
        • Jiang X
        • Dayton PA.
        A comparison of sonothrombolysis in aged clots between low-boiling-point phase-change nanodroplets and microbubbles of the same composition.
        Ultrasound Med Biol. 2020; 46: 3059-3068
        • Li S
        • Lin S
        • Cheng Y
        • Matsunaga TO
        • Eckersley RJ
        • Tang MX.
        Quantifying activation of perfluorocarbon-based phase-change contrast agents using simultaneous acoustic and optical observation.
        Ultrasound Med Biol. 2015; 41: 1422-1431
        • Matsunaga TO
        • Sheeran PS
        • Luois S
        • Streeter JE
        • Mullin LB
        • Banerjee B
        • Dayton PA.
        Phase-change nanoparticles using highly volatile perfluorocarbons: Toward a platform for extravascular ultrasound imaging.
        Theranostics. 2012; 2: 1185-1198
        • Ordovas KG
        • Higgins CB.
        Delayed contrast enhancement on MR images of myocardium: Past, present, future.
        Radiology. 2011; 261: 358-374
        • Porter TR
        • Arena C
        • Sayyed S
        • Lof J
        • High RR
        • Xie F
        • Dayton PA.
        Targeted transthoracic acoustic activation of systemically administered nanodroplets to detect myocardial perfusion abnormalities.
        Circ Cardiovasc Imaging. 2016; 9e003770
        • Puett C
        • Sheeran PS
        • Rojas JD
        • Dayton PA.
        Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.
        Ultrasonics. 2014; 54: 2024-2033
        • Reznik N
        • Lajoinie G
        • Shpak O
        • Gelderblom EC
        • Williams R
        • de Jong N
        • Versluis M
        • Burns PN.
        On the acoustic properties of vaporized submicron perfluorocarbon droplets.
        Ultrasound Med Biol. 2014; 40: 1379-1384
        • Sheeran PS
        • Luois SH
        • Mullin LB
        • Matsunaga TO
        • Dayton PA.
        Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons.
        Biomaterials. 2012; 33: 3262-3269
        • Sheeran PS
        • Rojas JD
        • Puett C
        • Hjelmquist J
        • Arena CB
        • Dayton PA.
        Contrast-enhancing ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.
        Ultrasound Med Biol. 2015; 41: 814-831
        • Shihan MH
        • Novo SG
        • Le Marchand SJ
        • Wang Y
        • Duncan MK
        A simple method for quantifying confocal fluorescent images.
        Biochem Biophys Rep. 2021; 25100916
        • Whittingham TA.
        Contrast specific imaging techniques.
        in: Quaia E Contrast media in ultrasonography. Springer, Berlin/Heidelberg2006: 43-70
        • Xie F
        • Everbach EC
        • Gao S
        • Brvol LK
        • Shi WT
        • Vignon F
        • Powers JE
        • Lof J
        • Porter TR.
        Effects of attenuation and thrombus age on the success of ultrasound and microbubble-mediated thrombus dissolution.
        Ultrasound Med Biol. 2011; 37: 280-288
        • Yang Y
        • Yang D
        • Zhang Q
        • Guo X
        • Raymond JL
        • Roy RA
        • Zhang D
        • Tu J.
        The influence of droplet concentration on phase change and inertial cavitation thresholds associated with acoustic droplet vaporization.
        J Acoust Soc Am. 2020; 148: EL375-EL381
        • Zeng P
        • Qian L
        • Lof J
        • Stolze E
        • El Kadi S
        • Bargar T
        • Matsunaga T
        • Sklenar J
        • Xie F
        • Porter TR.
        Delayed echo enhancement imaging to quantify myocardial infarct size.
        J Am Soc Echocardiogr. 2021; 34: 898-909
        • Zhou Y.
        Application of acoustic droplet vaporization in ultrasound therapy.
        J Ther Ultrasound. 2015; 3: 20