Advertisement

A Comprehensive Motion Compensation Method for In-Plane and Out-of-Plane Motion in Dynamic Contrast-Enhanced Ultrasound of Focal Liver Lesions

      Abstract

      Contrast-enhanced ultrasound (CEUS) acquisitions of focal liver lesions are affected by motion, which has an impact on contrast signal quantification. We therefore developed and tested, in a large patient cohort, a motion compensation algorithm called the Iterative Local Search Algorithm (ILSA), which can correct for both periodic and non-periodic in-plane motion and can reject frames with out-of-plane motion. CEUS cines of 183 focal liver lesions in 155 patients from three hospitals were used to develop and test ILSA. Performance was evaluated through quantitative metrics, including the root mean square error and R2 in fitting time–intensity curves and standard deviation value of B-mode intensities, computed across cine frames), and qualitative evaluation, including B-mode mean intensity projection images and parametric perfusion imaging. The median root mean square error significantly decreased from 0.032 to 0.024 (p < 0.001). Median R2 significantly increased from 0.88 to 0.93 (p < 0.001). The median standard deviation value of B-mode intensities significantly decreased from 6.2 to 5.0 (p < 0.001). B-Mode mean intensity projection images revealed improved spatial resolution. Parametric perfusion imaging also exhibited improved spatial detail and better differentiation between lesion and background liver parenchyma. ILSA can compensate for all types of motion encountered during liver CEUS, potentially improving contrast signal quantification of focal liver lesions.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American College of Radiology (ACR)
        Contrast-enhanced ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS v2017).
        ACR, Reston, VA2017
        • Anaye A
        • Perrenoud G
        • Rognin N
        • Arditi M
        • Mercier L
        • Frinking P
        • Ruffieux C
        • Peetrons P
        • Meuli R
        • Meuwly JY.
        Differentiation of focal liver lesions: Usefulness of parametric imaging with contrast-enhanced US.
        Radiology. 2011; 261: 300-310
        • Bakas S
        • Doulgerakis-Kontoudis M
        • Hunter GJA
        • Sidhu PS
        • Makris D
        • Chatzimichail K.
        Evaluation of indirect methods for motion compensation in 2-D focal liver lesion contrast-enhanced ultrasound (CEUS) imaging.
        Ultrasound Med Biol. 2019; 45: 1380-1396
        • Bradski G.
        The openCV library. Dr. Dobb's.
        J Software Tools. 2000; 120: 122-125
        • Burrowes DP
        • Medellin A
        • Harris AC
        • Milot L
        • Wilson SR.
        Contrast-enhanced US approach to the diagnosis of focal liver masses.
        RadioGraphics. 2017; 37: 1388-1400
      1. Chen JS, Goubran M, Kim G, Willmann J, Zeineh M, Hristov D, El Kaffas A. Motion correction of 3D dynamic contrast-enhanced ultrasound imaging without anatomical B-mode images. arXiv preprint arXiv:2010.01721. 2020.

        • Dietrich CF
        • Averkiou MA
        • Correas JM
        • Lassau N
        • Leen E
        • Piscaglia F.
        An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumour perfusion.
        Ultraschall Med. 2012; 33: 344-351
        • Dietrich CF
        • Averkiou M
        • Nielsen MB
        • Barr RG
        • Burns PN
        • Calliada F
        • Cantisani V
        • Choi B
        • Chammas MC
        • Clevert DA
        • Claudon M
        • Correas JM
        • Cui XW
        • Cosgrove D
        • D'Onofrio M
        • Dong Y
        • Eisenbrey J
        • Fontanilla T
        • Gilja OH
        • Ignee A
        • Jenssen C
        • Kono Y
        • Kudo M
        • Lassau N
        • Lyshchik A
        • Franca Meloni M
        • Moriyasu F
        • Nolsøe C
        • Piscaglia F
        • Radzina M
        • Saftoiu A
        • Sidhu PS
        • Sporea I
        • Schreiber-Dietrich D
        • Sirlin CB
        • Stanczak M
        • Weskott H-P
        • Wilson SR
        • Willmann JK
        • Kim TK
        • Jang HJ
        • Vezeridis A
        • Westerway S
        How to perform contrast-enhanced ultrasound (CEUS).
        Ultrasound Int Open. 2018; 4: E2-E15
        • Gatos I
        • Tsantis S
        • Spiliopoulos S
        • Skouroliakou A
        • Theotokas I
        • Zoumpoulis P
        • Hazle JD
        • Kagadis GC.
        A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound.
        Med Phys. 2015; 42: 3948-3959
        • Ji Z
        • Mingyue D
        • Fan M
        • Yuchi M.
        Fast algorithm for respiratory motion correction in free-breathing contrast-enhanced ultrasound imaging.
        in: Proc SPIE 7968, Medical Imaging 2011: Ultrasonic Imaging, Tomography and Therapy 796817. 2011 (25 March)
        • Kaizhi W
        • Liping J
        • Zirong Y
        • Qian D
        • Xiaorui W
        • Tingting L.
        Respiratory compensation in contrast enhanced ultrasound using image clustering.
        in: Proc SPIE 10580, Medical Imaging 2018: Ultrasonic Imaging and Tomography 1058009. 2018 (6 March)
        • Kondo S
        • Takagi K
        • Nishida M
        • Iwai T
        • Kudo Y
        • Ogawa K
        • Kamiyama T
        • Shibuya H
        • Kahata K
        • Shimizu C.
        Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles.
        IEEE Trans Med Imaging. 2017; 36: 1427-1437
        • Mulé S
        • Kachenoura N
        • Lucidarme O
        • De Oliveira A
        • Pellot-Barakat C
        • Herment A
        • Frouin F.
        An automatic respiratory gating method for the improvement of microcirculation evaluation: Application to contrast-enhanced ultrasound studies of focal liver lesions.
        Phys Med Biol. 2011; 56: 5153
        • Pei XQ
        • Liu LZ
        • Xiong YH
        • Zou RH
        • Chen MS
        • Li AH
        • Cai MY.
        Quantitative analysis of contrast-enhanced ultrasonography: Differentiating focal nodular hyperplasia from hepatocellular carcinoma.
        Br J Radiol. 2013; 8620120536
        • Roccarina D
        • Garcovich M
        • Ainora ME
        • Riccardi L
        • Pompili M
        • Gasbarrini A
        • Zocco MA.
        Usefulness of contrast enhanced ultrasound in monitoring therapeutic response after hepatocellular carcinoma treatment.
        World J Hepatol. 2015; 7: 1866-1874
        • Rognin NG
        • Arditi M
        • Mercier L
        • Frinking PJ
        • Schneider M
        • Perrenoud G
        • Anaye A
        • Meuwly JY
        • Tranquart F.
        Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2010; 57: 2503-2511
        • Schäfer S
        • Nylund K
        • Sævik F
        • Engjom T
        • Mézl M
        • Jiřík R
        • Dimcevski G
        • Gilja OH
        • Tönnies K.
        Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis.
        Comput Biol Med. 2015; 63: 229-237
        • Streba CT
        • Ionescu M
        • Gheonea DI
        • Sandulescu L
        • Ciurea T
        • Saftoiu A
        • Vere CC
        • Rogoveanu I.
        Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors.
        World J Gastroenterol. 2012; 18: 4427-4434
        • Strouthos C
        • Lampaskis M
        • Sboros V
        • Mcneilly A
        • Averkiou M.
        Indicator dilution models for the quantification of microvascular blood flow with bolus administration of ultrasound contrast agents.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2010; 57: 1296-1310
        • Ta CN
        • Eghtedari M
        • Mattrey RF
        • Kono Y
        • Kummel AC.
        2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound.
        Invest Radiol. 2014; 49: 707-719
        • Turco S
        • Wijkstra H
        • Mischi M.
        Mathematical models of contrast transport kinetics for cancer diagnostic imaging: A review.
        IEEE Rev Biomed Eng. 2016; 9: 121-147
        • Turco S
        • Frinking P
        • Wildeboer R
        • Arditi M
        • Wijkstra H
        • Lindner JR
        • Mischi M.
        Contrast-enhanced ultrasound quantification: From kinetic modeling to machine learning.
        Ultrasound Med Biol. 2020; 46: 518-543
        • Wan P
        • Chen F
        • Shao W
        • Liu C
        • Zhang Y
        • Wen B
        • Kong W
        • Zhang D.
        Irregular respiratory motion compensation for liver contrast-enhanced ultrasound via transport-based motion estimation.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68: 1117-1130
        • Wu K
        • Jiang L
        • Yu Z
        • Deng Q
        • Wu X
        • Liu T.
        Respiratory compensation in contrast enhanced ultrasound using image clustering.
        in: Proc SPIE 10580, Medical Imaging 2018: Ultrasonic Imaging and Tomography 1058009. 2018 (6 March)
        • Zhang J
        • Zhang Y
        • Chen J
        • Ling G
        • Wang X
        • Xu H.
        Respiratory motion correction for liver contrast-enhanced ultrasound by automatic selection of a reference image.
        Med Phys. 2019; 46: 4992-5001