Comparing Myocardial Shear Wave Propagation Velocity Estimation Methods Based on Tissue Displacement, Velocity and Acceleration Data


      Shear wave elastography (SWE) is a promising technique used to assess cardiac function through the evaluation of cardiac stiffness non-invasively. However, in the literature, SWE varies in terms of tissue motion data (displacement, velocity or acceleration); method used to characterize mechanical wave propagation (time domain [TD] vs. frequency domain [FD]); and the metric reported (wave speed [WS], shear or Young's modulus). This variety of reported methodologies complicates comparison of reported findings and sheds doubt on which methodology better approximates the true myocardial properties. We therefore conducted a simulation study to investigate the accuracy of various SWE data analysis approaches while varying cardiac geometry and stiffness. Lower WS values were obtained by the TD method compared with the FD method. Acceleration-based WS estimates in the TD were systematically larger than those based on velocity (∼10% difference). These observations were confirmed by TD analysis of 32 in vivo SWE mechanical wave measurements. In vivo data quality is typically too low for accurate FD analysis. Therefore, our study suggests using acceleration-based TD analysis for in vivo SWE to minimize underestimation of the true WS and, thus, to maximize the sensitivity of SWE to detect stiffness changes resulting from pathology.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Arnott PJ
        • Pfeiffer GW
        • Tavel ME.
        Spectral analysis of heart sounds: relationships between some physical characteristics and frequency spectra of first and second heart sounds in normals and hypertensives.
        J Biomed Eng. 1984; 6: 121-128
      1. Bankman IN Handbook of medical image processing and analysis. Elsevier, San Diego, CA2009
        • Bernal M
        • Nenadic I
        • Urban MW
        • Greenleaf JF.
        Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes.
        J Acoust Soc Am. 2011; 129: 1344-1354
        • Bezy S
        • Duchenne J
        • Orlowska M
        • Amoni M
        • Caenen A
        • Keijzer L
        • Mccutcheon K
        • Ingelaere S
        • Cvijic M
        • Puvrez A
        • Vos H
        • D'hooge J
        • Voigt J
        Natural shear wave propagation speed is influenced by both changes in myocardial structural properties as well as loading conditions.
        Eur Heart J Cardiovasc Imaging. 2021; 22: 167
        • Bouchard RR
        • Hsu SJ
        • Palmeri ML
        • Rouze NC
        • Nightingale KR
        • Trahey GE.
        Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio Rate (DRR) method.
        Ultrasound Med Biol. 2011; 37: 1087-1100
        • Caenen A
        • Pernot M
        • Shcherbakova DA
        • Mertens L
        • Kersemans M
        • Segers P
        • Swillens A.
        Investigating shear wave physics in a generic pediatric left ventricular model via in vitro experiments and finite element simulations.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2017; 64: 349-361
        • Caenen A
        • Thabit A
        • Pernot M
        • Shcherbakova D
        • Mertens L
        • Swillens A
        • Segers P.
        The effect of stretching on transmural shear wave anisotropy in cardiac shear wave elastography: An ex vivo and in silico study.
        IEEE Int Ultrason Symp IUS. 2017;
        • Couade M
        • Pernot M
        • Messas E
        • Bel A
        • Ba M
        • Hagege A
        • Fink M
        • Tanter M.
        In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle.
        IEEE Trans Med Imaging. 2011; 30: 295-305
        • Cvijic M
        • Bézy S
        • Petrescu A
        • Santos P
        • Orlowska M
        • Chakraborty B
        • Duchenne J
        • Pedrosa J
        • Vanassche T
        • D’hooge J
        • Voigt JU
        Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography.
        Eur Hear J Cardiovasc Imaging. 2020; 21: 664-672
        • Elgeti T
        • Knebel F
        • Hättasch R
        • Hamm B
        • Braun J
        • Sack I.
        Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction.
        Radiology. 2014; 271: 681-687
        • Finel V.
        3D ultrafast echocardiography: toward a quantitative imaging of the myocardium.
        Thesis Univ. Sorbonne Paris Cité. 2018;
        • Golob M
        • Moss RL
        • Chesler NC.
        Cardiac tissue structure, properties, and performance: a materials science perspective.
        Ann Biomed Eng. 2014; 42: 2003-2013
        • Guerra JA
        • de AA
        • Trippia M
        • Pissaia A
        • Teixeira BC de A
        • Ivantes CAP.
        Acoustic radiation force impulse is equivalent to liver biopsy to evaluate liver fibrosis in patients with chronic hepatitis C and nonalcoholic fatty liver disease.
        Arq Gastroenterol. 2015; 52: 234-238
        • Jayaraman J
        • Indiran V
        • Kannan K
        • Maduraimuthu P.
        Acoustic radiation force impulse imaging in benign and malignant breast lesions.
        Cureus. 2017; 9: e1309
        • Kanai H.
        Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
        IEEE Trans Ultrason Ferroelectr Freq Control IEEE. 2005; 52: 1931-1942
        • Kanai H.
        Propagation of vibration caused by electrical excitation in the normal human heart.
        Ultrasound Med Biol. 2009; 35: 936-948
        • Keijzer L
        • Bosch JG
        • Verweij MD
        • de Jong N
        • Vos HJ.
        Intra-scan variability of natural shear wave measurements.
        Proc IEEE Int Ultrason Symp. 2018;
        • Kijanka P
        • Urban MW.
        Phase velocity estimation with expanded bandwidth in viscoelastic phantoms and tissues.
        IEEE Trans Med Imaging. 2021; 40: 1352-1362
        • Kou S
        • Caballero L
        • Dulgheru R
        • Voilliot D
        • De Sousa C
        • Kacharava G
        • Athanassopoulos GD
        • Barone D
        • Baroni M
        • Cardim N
        • Gomez De Diego JJ
        • Hagendorff A
        • Henri C
        • Hristova K
        • Lopez T
        • Magne J
        • De La Morena G
        • Popescu BA
        • Penicka M
        • Ozyigit T
        • Rodrigo Carbonero JD
        • Salustri A
        • Van De Veire N
        • Von Bardeleben RS
        • Vinereanu D
        • Voigt JU
        • Zamorano JL
        • Donal E
        • Lang RM
        • Badano LP
        • Lancellotti P
        Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 680-690
        • Kvåle KF
        • Salles S
        • Lervik LCN
        • Støylen A
        • Løvstakken L
        • Samset E
        • Torp H.
        Detection of tissue fibrosis using natural mechanical wave velocity estimation: feasibility study.
        Ultrasound Med Biol. 2020; 46: 2481-2492
        • Landau LD
        • Lifshitz EM.
        Theory of elasticity.
        Pergamon Press, Bristol, UK/New York, NY1970
        • Maksuti E
        • Widman E
        • Larsson D
        • Urban MW
        • Larsson M
        • Bjällmark A.
        Arterial stiffness estimation by shear wave elastography: validation in phantoms with mechanical testing.
        Ultrasound Med Biol. 2016; 42: 308-321
        • Nagueh SF
        • Smiseth OA
        • Appleton CP
        • Byrd BF
        • Dokainish H
        • Edvardsen T
        • Flachskampf FA
        • Gillebert TC
        • Klein AL
        • Lancellotti P
        • Marino P
        • Oh JK
        • Popescu BA
        • Waggoner AD.
        Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2016; 29: 277-314
        • Nenadic IZ
        • Urban MW
        • Pislaru C
        • Escobar D
        • Vasconcelos L
        • Greenleaf JF.
        In vivo open- and closed-chest measurements of left-ventricular myocardial viscoelasticity using Lamb wave dispersion ultrasound vibrometry (LDUV): a feasibility study.
        Biomed Phys Eng Express. 2018; 4047001
        • Nightingale K
        • Rouze N
        • Rosenzweig S
        • Wang M
        • Abdelmalek M
        • Guy C
        • Palmeri M.
        Derivation and analysis of viscoelastic properties in human liver: impact of frequency on fibrosis and steatosis staging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62: 165-175
        • Pelivanov I
        • Gao L
        • Pitre J
        • Kirby MA
        • Song S
        • Li D
        • Shen TT
        • Wang RK
        • O'Donnell M
        Does group velocity always reflect elastic modulus in shear wave elastography?.
        J Biomed Opt. 2019; 24: 1
        • Pernot M
        • Couade M
        • Mateo P
        • Fischmeister R
        • Crozatier B
        • Tanter M.
        Dynamic and quantitative assessment of myocardial stiffness using shear wave imaging.
        in: Proceedings, 2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, Piscataway, NJ2010: 976-979
        • Petrescu A
        • Santos P
        • Orlowska M
        • Pedrosa J
        • Bézy S
        • Chakraborty B
        • Cvijic M
        • Dobrovie M
        • Delforge M
        • D'hooge J
        • Voigt JU
        Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2019; 12: 2389-2398
        • Petrescu A
        • Bézy S
        • Cvijic M
        • Santos P
        • Orlowska M
        • Duchenne J
        • Pedrosa J
        • Van Keer JM
        • Verbeken E
        • von Bardeleben S
        • Droogne W
        • Bogaert J
        • Van Cleemput J
        • D'hooge J
        • Voigt JU
        Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients.
        JACC Cardiovasc Imaging. 2020; 13: 2304-2313
        • Pislaru C
        • Urban MW
        • Pislaru SV
        • Kinnick RR
        • Greenleaf JF.
        Viscoelastic properties of normal and infarcted myocardium measured by a multifrequency shear wave method: comparison with pressure-segment length method.
        Ultrasound Med Biol. 2014; 40: 1785-1795
        • Rose JL.
        Ultrasonic guided waves in solid media.
        Cambridge University Press, New York2014
        • Rouze NC
        • Deng Y
        • Trutna CA
        • Palmeri ML
        • Nightingale KR.
        Characterization of viscoelastic materials using group shear wave speeds.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2018; 65: 780-794
        • Salles S
        • Espeland T
        • Molares A
        • Aase SA
        • Hammer TA
        • Støylen A
        • Aakhus S
        • Lovstakken L
        • Torp H.
        3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping.
        JACC Cardiovasc Imaging. 2021; 14: 1495-1505
        • Santos P
        • Petrescu AM
        • Pedrosa JP
        • Orlowska M
        • Komini V
        • Voigt JU
        • D’Hooge J
        Natural shear wave imaging in the human heart: normal values, feasibility, and reproducibility.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2019; 66: 442-452
        • Sarvazyan AP
        • Urban MW
        • Greenleaf JF.
        Acoustic waves in medical imaging and diagnostics.
        Ultrasound Med Biol. 2013; 39: 1133-1146
        • Savarese G
        • Lund LH.
        Global public health burden of heart failure.
        Card Fail Rev. 2017; 03: 7
        • Strachinaru M
        • Bosch JG
        • van Dalen BM
        • van Gils L
        • van der Steen AFW
        • de Jong N
        • Geleijnse ML
        • Vos HJ.
        Cardiac shear wave elastography using a clinical ultrasound system.
        Ultrasound Med Biol. 2017; 43: 1596-1606
        • Treeby BE
        • Cox BT.
        k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields.
        J Biomed Opt. 2010; 15021314
        • Trutna CA
        • Rouze NC
        • Palmeri ML
        • Nightingale KR.
        Measurement of viscoelastic material model parameters using fractional derivative group shear wave speeds in simulation and phantom data.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2020; 67: 286-295
        • Voigt JU.
        Direct stiffness measurements by echocardiography: does the search for the Holy Grail come to an end?.
        JACC Cardiovasc Imaging. 2019; 12: 1146-1148
        • Vos HJ
        • van Dalen BM
        • Heinonen I
        • Bosch JG
        • Sorop O
        • Duncker DJ
        • van der Steen AFW
        • de Jong N.
        Cardiac shear wave velocity detection in the porcine heart.
        Ultrasound Med Biol. 2017; 43: 753-764