Advertisement
Review Article| Volume 46, ISSUE 10, P2605-2624, October 2020

Download started.

Ok

Carotid Wall Longitudinal Motion in Ultrasound Imaging: An Expert Consensus Review

      Abstract

      Motion extracted from the carotid artery wall provides unique information for vascular health evaluation. Carotid artery longitudinal wall motion corresponds to the multiphasic arterial wall excursion in the direction parallel to blood flow during the cardiac cycle. While this motion phenomenon has been well characterized, there is a general lack of awareness regarding its implications for vascular health assessment or even basic vascular physiology. In the last decade, novel estimation strategies and clinical investigations have greatly advanced our understanding of the bi-axial behavior of the carotid artery, necessitating an up-to-date review to summarize and classify the published literature in collaboration with technical and clinical experts in the field. Within this review, the state-of-the-art methodologies for carotid wall motion estimation are described, and the observed relationships between longitudinal motion-derived indices and vascular health are reported. The vast number of studies describing the longitudinal motion pattern in plaque-free arteries, with its putative application to cardiovascular disease prediction, point to the need for characterizing the added value and applicability of longitudinal motion beyond established biomarkers. To this aim, the main purpose of this review was to provide a strong base of theoretical knowledge, together with a curated set of practical guidelines and recommendations for longitudinal motion estimation in patients, to foster future discoveries in the field, toward the integration of longitudinal motion in basic science as well as clinical practice.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahlgren Å.R.
        • Cinthio M.
        • Steen S.
        • Persson H.W.
        • Sjöberg T.
        • Lindström K.
        Effects of adrenaline on longitudinal arterial wall movements and resulting intramural shear strain: A first report.
        Clin Physiol Funct Imaging. 2009; 29: 353-359
        • Ahlgren Å.R.
        • Cinthio M.
        • Steen S.
        • Nilsson T.
        • Sjöberg T.
        • Persson H.W.
        • Lindström K.
        Longitudinal displacement and intramural shear strain of the porcine carotid artery undergo profound changes in response to catecholamines.
        Am J Physiol Heart Circ Physiol. 2011; 302: H1102-H1115
        • Ahlgren Å.R.
        • Cinthio M.
        • Persson H.W.
        • Lindström K.
        Different patterns of longitudinal displacement of the common carotid artery wall in healthy humans are stable over a four-month period.
        Ultrasound Med Biol. 2012; 38: 916-925
        • Ahlgren Å.R.
        • Steen S.
        • Segstedt S.
        • Erlöv T.
        • Lindström K.
        • Sjöberg T.
        • Persson H.W.
        • Ricci S.
        • Tortoli P.
        • Cinthio M.
        Profound increase in longitudinal displacements of the porcine carotid artery wall can take place independently of wall shear stress: A continuation report.
        Ultrasound Med Biol. 2015; 41: 1342-1353
        • Albinsson J.
        • Brorsson S.
        • Ahlgren Å.R.
        • Cinthio M.
        Improved tracking performance of Lagrangian block-matching methodologies using block expansion in the time domain: In silico, phantom and in vivo evaluations.
        Ultrasound Med Biol. 2014; 40: 2508-2520
        • Albinsson J.
        • Hasegawa H.
        • Takahashi H.
        • Boni E.
        • Ramalli A.
        • Rydén Ahlgren Å.
        • Cinthio M.
        Iterative 2D tissue motion tracking in ultrafast ultrasound imaging.
        Appl Sci. 2018; 8: 662
        • Alley H.
        • Owens C.D.
        • Gasper W.J.
        • Grenon S.M.
        Ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery in clinical research.
        J Vis Exp. 2014; 19: e52070
        • Au J.S.
        • Ditor D.S.
        • MacDonald M.J.
        • Stöhr E.J.
        Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics.
        Physiol Rep. 2016; 4: e12872
        • Au J.S.
        • Valentino S.E.
        • McPhee P.G.
        • MacDonald M.J.
        Diastolic carotid artery longitudinal wall motion is sensitive to both aging and coronary artery disease status independent of arterial stiffness.
        Ultrasound Med Biol. 2017; 43: 1906-1918
        • Au J.S.
        • Bochnak P.A.
        • Valentino S.E.
        • Cheng J.L.
        • Stöhr E.J.
        • MacDonald M.J.
        Cardiac and haemodynamic influence on carotid artery longitudinal wall motion.
        Exp Physiol. 2018; 103: 141-152
        • Au J.S.
        • Yli-Ollila H.
        • MacDonald M.J.
        An assessment of intra-individual variability in carotid artery longitudinal wall motion: Recommendations for data acquisition.
        Physiol Meas. 2018; 39 (09 NT01)
        • Au J.S.
        • Proudfoot N.A.
        • Timmons B.W.
        • MacDonald M.J.
        Retrograde shift in carotid artery longitudinal wall motion after one-year follow-up in children.
        Atherosclerosis. 2019; 288: 26-32
        • Au J.S.
        • Shenouda N.
        • Oikawa S.Y.
        • Gillen J.B.
        • Morton R.W.
        • Gibala M.J.
        • Phillips S.M.
        • MacDonald M.J.
        Carotid artery longitudinal wall motion is unaffected by 12 weeks of endurance, sprint interval or resistance exercise training.
        Ultrasound Med Biol. 2020; 46: 992-1000
        • Basarab A.
        • Gueth P.
        • Liebgott H.
        • Delachartre P.
        Phase-based block matching applied to motion estimation with unconventional beamforming strategies.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 945-957
        • Ben-Shlomo Y.
        • Spears M.
        • Boustred C.
        • May M.
        • Anderson S.G.
        • Benjamin E.J.
        • Boutouyrie P.
        • Cameron J.
        • Chen C.H.
        • Cruickshank J.K.
        Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects.
        J Am Coll Cardiol. 2014; 63: 636-646
        • Chen X.
        • Zohdy M.J.
        • Emelianov S.Y.
        • O'Donnell M.
        Lateral speckle tracking using synthetic lateral phase.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 540-550
        • Cinthio M.
        • Ahlgren A.R.
        • Jansson T.
        • Eriksson A.
        • Persson H.W.
        • Lindstrom K.
        Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2005; 52: 1300-1311
        • Cinthio M.
        • Ahlgren A.R.
        • Bergkvist J.
        • Jansson T.
        • Persson H.W.
        • Lindstrom K.
        Longitudinal movements and resulting shear strain of the arterial wall.
        Am J Physiol Heart Circ Physiol. 2006; 291: H394-H402
        • Cinthio M.
        • Albinsson J.
        • Erlöv T.
        • Bjarnegård N.
        • Länne T.
        • Ahlgren Å.R.
        Longitudinal movement of the common carotid artery wall: New information on cardiovascular aging.
        Ultrasound Med Biol. 2018; 44: 2283-2295
        • de Korte C.L.
        • Hansen H.H.G.
        • van der Steen A.F.W.
        Vascular ultrasound for atherosclerosis imaging.
        Interface Focus. 2011; 1: 565-575
        • Dempsey R.J.
        • Varghese T.
        • Jackson D.C.
        • Wang X.
        • Meshram N.H.
        • Mitchell C.C.
        • Hermann B.P.
        • Johnson S.C.
        • Berman S.E.
        • Wilbrand S.M.
        Carotid atherosclerotic plaque instability and cognition determined by ultrasound-measured plaque strain in asymptomatic patients with significant stenosis.
        J Neurosurg. 2018; 128: 111-119
        • Deng S.
        • Tomioka J.
        • Debes J.
        • Fung Y.
        New experiments on shear modulus of elasticity of arteries.
        Am J Physiol Heart Circ Physiol. 1994; 266: H1-H10
        • Fekkes S.
        • Saris A.E.
        • Nillesen M.M.
        • Menssen J.
        • Hansen H.H.
        • de Korte C.L.
        Simultaneous vascular strain and blood vector velocity imaging using high-frequency versus conventional-frequency plane wave ultrasound: A phantom study.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2018; 65: 1166-1181
        • Gamble G.
        • Zorn J.
        • Sanders G.
        • MacMahon S.
        • Sharpe N.
        Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery.
        Stroke. 1994; 25: 11-16
        • Gao Z.
        • Xiong H.
        • Zhang H.
        • Wu D.
        • Lu M.
        • Wu W.
        • Wong K.K.
        • Zhang Y.T.
        Motion estimation of common carotid artery wall using a H filter based block matching method.
        in: Navab N. Hornegger J. Wells W. Frangi A. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Lecture Notes in Computer Science. 9351. Springer, Cham2015: 443-450
        • Gao Z.
        • Sun Y.
        • Zhang H.
        • Ghista D.
        • Li Y.
        • Xiong H.
        • Liu X.
        • Xie Y.
        • Wu W.
        • Li S.
        Carotid artery wall motion estimated from ultrasound imaging sequences using a nonlinear state space approach.
        in: Ourselin S. Joskowicz L. Sabuncu M. Unal G. Wells W. 2016 Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016. Lecture Notes in Computer Science. 9902. Springer, Cham2016: 98-106
        • Gao Z.
        • Li Y.
        • Sun Y.
        • Yang J.
        • Xiong H.
        • Zhang H.
        • Liu X.
        • Wu W.
        • Liang D.
        • Li S.
        Motion tracking of the carotid artery wall from ultrasound image sequences: A nonlinear state-space approach.
        IEEE Trans Med Imaging. 2017; 37: 273-283
        • Gao Z.
        • Xiong H.
        • Liu X.
        • Zhang H.
        • Ghista D.
        • Wu W.
        • Li S.
        Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.
        Med Image Anal. 2017; 37: 1-21
        • Gastounioti A.
        • Golemati S.
        • Stoitsis J.
        • Nikita K.S.
        Comparison of Kalman-filter-based approaches for block matching in arterial wall motion analysis from B-mode ultrasound.
        Meas Sci Technol. 2011; 22114008
        • Gastounioti A.
        • Golemati S.
        • Stoitsis J.
        • Nikita K.
        Adaptive block matching methods for carotid artery wall motion estimation from B-mode ultrasound: In silico evaluation & in vivo application.
        Phys. Med. Biol. 2013; 58: 8647-8661
        • Gastounioti A.
        • Kolias V.
        • Golemati S.
        • Tsiaparas N.N.
        • Matsakou A.
        • Stoitsis J.S.
        • Kadoglou N.P.
        • Gkekas C.
        • Kakisis J.D.
        • Liapis C.D.
        CAROTID—A web-based platform for optimal personalized management of atherosclerotic patients.
        Comput Methods Programs Biomed. 2014; 114: 183-193
        • Gepner A.D.
        • Colangelo L.A.
        • Reilly N.
        • Korcarz C.E.
        • Kaufman J.D.
        • Stein J.H.
        Carotid artery longitudinal displacement, cardiovascular disease and risk factors: The multi-ethnic study of atherosclerosis.
        PloS One. 2015; 10e0142138
        • Gepner A.D.
        • McClelland R.L.
        • Korcarz C.E.
        • Young R.
        • Kaufman J.D.
        • Mitchell C.C.
        • Stein J.H.
        Carotid artery displacement and cardiovascular disease risk in the Multi-Ethnic Study of Atherosclerosis.
        Vasc Med. 2019; 24: 405-413
        • Golemati S.
        • Sassano A.
        • Lever M.J.
        • Bharath A.A.
        • Dhanjil S.
        • Nicolaides A.N.
        Carotid artery wall motion estimated from B-mode ultrasound using region tracking and block matching.
        Ultrasound Med Biol. 2003; 29: 387-399
        • Golemati S.
        • Stoitsis J.S.
        • Gastounioti A.
        • Dimopoulos A.C.
        • Koropouli V.
        • Nikita K.S.
        Comparison of block matching and differential methods for motion analysis of the carotid artery wall from ultrasound images.
        IEEE Trans Inf Technol Biomed. 2012; 16: 852-858
        • Golemati S.
        • Gastounioti A.
        • Nikita K.S.
        Ultrasound-image-based cardiovascular tissue motion estimation.
        IEEE Rev Biomed Eng. 2016; 9: 208-218
        • Gutierrez J.
        • Rundek T.
        Carotid wall imaging.
        in: Baracchini C. Csiba L. Manual of Neurosonology. Cambridge University Press, Cambridge2016: 34-47
        • Hasegawa H.
        Phase-Sensitive 2 D Motion Estimators Using Frequency Spectra of Ultrasonic Echoes.
        Applied Sciences. 2016; 6: 195
        • Hasegawa H.
        • Kanai H.
        Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2006; 53: 52-63
        • Hasegawa H.
        • Kanai H.
        Modification of the phased-tracking method for reduction of artifacts in estimated artery wall deformation.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2006; 53: 2050-2064
        • Hasegawa H.
        • Kanai H.
        Reduction of influence of variation in center frequencies of RF echoes on estimation of artery-wall strain.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1921-1934
        • Hasegawa H.
        • Kanai H.
        Simultaneous imaging of artery-wall strain and blood flow by high frame rate acquisition of RF signals.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 2626-2639
        • Hasegawa H.
        • Kanai H.
        Phase-sensitive lateral motion estimator for measurement of artery-wall displacement-phantom study.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 2450-2462
        • Hein I.
        • O'Brien W.D.
        Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-A review.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1993; 40: 84-102
        • Horn B.K.
        • Schunck B.G.
        Determining optical flow.
        Artif Intell. 1981; 17: 185-203
        • Humphrey J.
        • Eberth J.
        • Dye W.
        • Gleason R.
        Fundamental role of axial stress in compensatory adaptations by arteries.
        J Biomech. 2009; 42: 1-8
        • Idzenga T.
        • Hansen H.H.
        • Thijssen J.M.
        • de Korte C.L.
        Enhancing the performance of lateral shear strain estimation by using 2-D strain imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2014; 61: 756-764
        • Jensen J.A.
        Field: A program for simulating ultrasound systems.
        in: Proceedings, 10th Nordicbaltic Conference on Biomedical Imaging, Vol. 4, Suppl. 1, Part 1. Citeseer, 1996: 351-353
        • Jensen J.A.
        • Munk P.
        A new method for estimation of velocity vectors.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1998; 45: 837-851
        • Kasai C.
        • Namekawa K.
        • Koyano A.
        • Omoto R.
        Real-time two-dimensional blood flow imaging using an autocorrelation technique.
        IEEE Trans Sonics Ultrason. 1985; 32: 458-464
      1. Lawton R., Greene L.A method for the in situ study of aortic elasticity in the dog. Report No. NADC-MA-5603. Warminister, PA: Authorized Medical Allowance List, U.S. Naval and Air Development Center, 1956.

        • Liebgott H.
        • Wilhjelm J.E.
        • Jensen J.A.
        • Vray D.
        • Delachartre P.
        PSF dedicated to estimation of displacement vectors for tissue elasticity imaging with ultrasound.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2007; 54: 746-756
        • Liebgott H.
        • Basarab A.
        • Gueth P.
        • Friboulet D.
        • Delachartre P.
        Transverse oscillations for tissue motion estimation.
        Ultrasonics. 2010; 50: 548-555
        • Lopata R.G.P.
        • Nillesen M.M.
        • Hansen H.H.G.
        • Gerrits I.H.
        • Thijssen J.M.
        • de Korte C.L.
        Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radiofrequency data.
        Ultrasound Med Biol. 2009; 35: 796-812
        • Makūnaitė M.
        • Jurkonis R.
        • Rodríguez-Martínez A.
        • Jurgaitienė R.
        • Semaška V.
        • Mėlinytė K.
        • Kubilius R.
        Ultrasonic parametrization of arterial wall movements in low- and high-risk CVD subjects.
        Appl Sci. 2019; 9: 465
        • Miyajo A.
        • Hasegawa H.
        Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion.
        Jpn J Appl Phys. 2018; 57: 07LF11
        • Miyajo A.
        • Nagaoka R.
        • Hasegawa H.
        Comparison of ultrasonic motion estimators for vascular applications.
        Jpn J Appl Phys. 2019; 58: SGGE16
        • Mozaffarian D.
        • Benjamin E.J.
        • Go A.S.
        • Arnett D.K.
        • Blaha M.J.
        • Cushman M.
        • Das S.R.
        • de Ferranti S.
        • Després J.P.
        • Fullerton H.J.
        Heart disease and stroke statistics—2016 update: A report from the American Heart Association.
        Circulation. 2016; 133: e38-e360
        • Murray V.
        • Murillo S.
        • Pattichis M.
        • Loizou C.
        • Pattichis C.
        • Kyriacou E.
        • Nicolaides A.
        An AM–FM model for motion estimation in atherosclerotic plaque videos.
        in: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007. ACSSC 2007, Piscataway, NJ IEEE, 2007: 746-750
        • Nichols W.
        • Rourke M.
        • Hartley C.
        McDonald's blood flow in arteries: Theoretical, experimental and clinical principles.
        Arnold and Oxford University Press, New York/London1997
        • Nilsson T.
        • Ahlgren Å.R.
        • Jansson T.
        • Persson H.W.
        • Nilsson J.
        • Lindström K.
        • Cinthio M.
        A method to measure shear strain with high spatial resolution in the arterial wall non-invasively in vivo by tracking zero-crossings of B-mode intensity gradients.
        in: 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, CA, Piscataway, NJ IEEE, 2010: 491-494 (2007)
        • Patel D.J.
        • Mallos A.J.
        • Fry D.L.
        Aortic mechanics in the living dog.
        J Appl Physiol. 1961; 16: 293-299
        • Patel D.J.
        • Fry D.L.
        • Janicki J.S.
        The elastic symmetry of arterial segments in dogs.
        Circ Res. 1969; 24: 1-8
        • Perrot V.
        • Petrusca L.
        • Bernard A.
        • Vray D.
        • Liebgott H.
        Simultaneous pulse wave and flow estimation at high-framerate using plane wave and transverse oscillation on carotid phantom.
        in: 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, Piscataway, NJ IEEE, 2017: 1-4
        • Perrot V.
        • Liebgott H.
        • Long A.
        • Vray D.
        Simultaneous tissue and flow estimation at high frame rate using plane wave and transverse oscillation on in vivo carotid.
        in: 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, 2018, Piscataway, NJ2018: 1-4
        • Perrot V.
        • Salles S.
        • Vray D.
        • Liebgott H.
        Video magnification applied in ultrasound.
        IEEE Trans Biomed Eng. 2018; 66: 283-288
        • Persson M.
        • Rydén Ahlgren Å.
        • Jansson T.
        • Eriksson A.
        • Persson H.W.
        • Lindström K.
        A new non‐invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: First in vivo trial.
        Clin Physiol Funct Imaging. 2003; 23: 247-251
        • Proudfoot N.A.
        • Au J.S.
        • Timmons B.W.
        • MacDonald M.J.
        Associations between carotid artery longitudinal wall motion and arterial stiffness indicators in young children.
        Atherosclerosis. 2019; 287: 64-69
        • Qorchi S.
        • Zahnd G.
        • Galbrun D.
        • Sérusclat A.
        • Moulin P.
        • Vray D.
        • Orkisz M.
        Kalman-based carotid-artery longitudinal-kinetics estimation and pattern recognition.
        IRBM. 2017; 38: 219-223
        • Ribbers H.
        • Lopata R.G.
        • Holewijn S.
        • Pasterkamp G.
        • Blankensteijn J.D.
        • De Korte C.L.
        Noninvasive two-dimensional strain imaging of arteries: Validation in phantoms and preliminary experience in carotid arteries in vivo.
        Ultrasound Med Biol. 2007; 33: 530-540
        • Rizi F.Y.
        • Setarehdan S.K.
        • Behnam H.
        Measuring the effect of aging on vibrations of the carotid artery wall using empirical mode decomposition method.
        J Med Signals Sens. 2014; 4: 27
        • Rusconi C.
        • Raddino R.
        • Trichaki E.
        • Dei Cas L.
        Atherosclerotic plaque regression and arterial reverse remodelling in carotid and femoral arteries by statin use in primary prevention setting: Ultrasound findings.
        in: Minin O. Ultrasound imaging: Medical applications. IntechOpen, 2011
        • Salles S.
        • Zahnd G.
        • Liebgott H.
        • Sérusclat A.
        • Vray D.
        Real time US-tagging combined with phase-based optical flow applied to 2D motion estimation of the carotid artery wall.
        in: 2012 IEEE International Ultrasonics Symposium (IUS), Piscataway, NJ IEEE, 2012: 1185-1188
        • Salles S.
        • Chee A.J.
        • Garcia D.
        • Alfred C.
        • Vray D.
        • Liebgott H.
        2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62: 1047-1058
        • Scaramuzzino S.
        • Carallo C.
        • Pileggi G.
        • Gnasso A.
        • Spadea M.F.
        Longitudinal motion assessment of the carotid artery using speckle tracking and scale-invariant feature transform.
        Ann Biomed Eng. 2017; 45: 1865-1876
        • Shi H.
        • Varghese T.
        Two-dimensional multi-level strain estimation for discontinuous tissue.
        Phys Med Biol. 2007; 52: 389
        • Shi H.
        • Mitchell C.C.
        • McCormick M.
        • Kliewer M.A.
        • Dempsey R.J.
        • Varghese T.
        Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and relative lateral shift strain indices.
        Phys Med Biol. 2008; 53: 6377
        • Simonson J.S.
        • Schiller N.B.
        Descent of the base of the left ventricle: An echocardiographic index of left ventricular function.
        J Am Soc Echocardiogr. 1989; 2: 25-35
        • Soleimani E.
        • Mokhtari-Dizaji M.
        • Saberi H.
        • Sharif-Kashani S.
        A mathematical model for estimating the axial stress of the common carotid artery wall from ultrasound images.
        Med Biol Eng Comput. 2016; 54: 1205-1215
        • Stoitsis J.
        • Golemati S.
        • Dimopoulos A.
        • Nikita K.
        Analysis and quantification of arterial wall motion from B-mode ultrasound images-comparison of block-matching and optical flow.
        in: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE–EMBS 2005, Piscataway, NJ IEEE, 2006: 4469-4472 (2002)
        • Sumi C.
        Displacement vector measurement using instantaneous ultrasound signal phase-multidimensional autocorrelation and Doppler methods.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 24-43
        • Svedlund S.
        • Gan L.M.
        Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse.
        Atherosclerosis. 2011; 217: 120-124
        • Svedlund S.
        • Gan L.M.
        Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging.
        Clin Physiol Funct Imaging. 2011; 31: 32-38
        • Svedlund S.
        • Eklund C.
        • Robertsson P.
        • Lomsky M.
        • Gan L.M.
        Carotid artery longitudinal displacement predicts 1-year cardiovascular outcome in patients with suspected coronary artery disease.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1668-1674
        • Swillens A.
        • De Santis G.
        • Degroote J.
        • Lovstakken L.
        • Vierendeels J.
        • Segers P.
        Accuracy of carotid strain estimates from ultrasonic wall tracking: A study based on multiphysics simulations and in vivo data.
        IEEE Trans Med Imaging. 2011; 31: 131-139
        • Taivainen S.H.
        • Yli-Ollila H.
        • Juonala M.
        • Kahonen M.
        • Raitakari O.T.
        • Laitinen T.M.
        • Laitinen T.P.
        Interrelationships between indices of longitudinal movement of the common carotid artery wall and the conventional measures of subclinical arteriosclerosis.
        Clin Physiol Funct Imaging. 2017; 37: 305-313
        • Taivainen S.H.
        • Yli-Ollila H.
        • Juonala M.
        • Kähönen M.
        • Raitakari O.T.
        • Laitinen T.M.
        • Laitinen T.P.
        Influence of cardiovascular risk factors on longitudinal motion of the common carotid artery wall.
        Atherosclerosis. 2018; 272: 54-59
        • Tat J.
        • Psaromiligkos I.N.
        • Daskalopoulou S.S.
        Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall.
        Ultrasound Med Biol. 2016; 42: 2114-2122
        • Tat J.
        • Au J.S.
        • Keir P.J.
        • MacDonald M.J.
        Reduced common carotid artery longitudinal wall motion and intramural shear strain in individuals with elevated cardiovascular disease risk using speckle tracking.
        Clin Physiol Funct Imaging. 2017; 37: 106-116
        • Thijssen D.H.
        • Black M.A.
        • Pyke K.E.
        • Padilla J.
        • Atkinson G.
        • Harris R.A.
        • Parker B.
        • Widlansky M.E.
        • Tschakovsky M.E.
        • Green D.J.
        Assessment of flow-mediated dilation in humans: A methodological and physiological guideline.
        Am J Physiol Heart Circ Physiol. 2010; 300: H2-H12
        • Touboul P.J.
        Intima–media thickness of carotid arteries.
        Front Neurol Neurosci. 2015; 36: 31-39
        • Touboul P.J.
        • Hennerici M.G.
        • Meairs S.
        • Adams H.
        • Amarenco P.
        • Bornstein N.
        • Csiba L.
        • Desvarieux M.
        • Ebrahim S.
        • Hernandez Hernandez R.
        • Jaff M.
        • Kownator S.
        • Naqvi T.
        • Prati P.
        • Rundek T.
        • Sitzer M.
        • Schminke U.
        • Tardif J.C.
        • Taylor A.
        • Vicaut E.
        • Woo K.S.
        Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011): An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011.
        Cerebrovasc Dis. 2012; 34: 290-296
        • Townsend R.R.
        • Wilkinson I.B.
        • Schiffrin E.L.
        • Avolio A.P.
        • Chirinos J.A.
        • Cockcroft J.R.
        • Heffernan K.S.
        • Lakatta E.G.
        • McEniery C.M.
        • Mitchell G.F.
        Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association.
        Hypertension. 2015; 66: 698-722
        • Tozzi P.
        • Hayoz D.
        • Oedman C.
        • Mallabiabarrena I.
        • Von Segesser L.
        Systolic axial artery length reduction: An overlooked phenomenon in vivo.
        Am J Physiol Heart Circ Physiol. 2001; 280: H2300-H2305
        • Van Bortel L.M.
        • Laurent S.
        • Boutouyrie P.
        • Chowienczyk P.
        • Cruickshank J.
        • De Backer T.
        • Filipovsky J.
        • Huybrechts S.
        • Mattace-Raso F.U.
        • Protogerou A.D.
        Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity.
        J Hypertens. 2012; 30: 445-448
        • Vlachopoulos C.
        • O'Rourke M.
        • Nichols W.W.
        McDonald's blood flow in arteries: Theoretical, experimental and clinical principles.
        CRC Press, Boca Raton, FL2011
        • Yli-Ollila H.
        • Laitinen T.
        • Weckström M.
        • Laitinen T.
        Axial and radial waveforms in common carotid artery: An advanced method for studying arterial elastic properties in ultrasound imaging.
        Ultrasound Med Biol. 2013; 39: 1168-1177
        • Yli-Ollila H.
        • Tarvainen M.P.
        • Laitinen T.P.
        • Laitinen T.M.
        Principal component analysis of the longitudinal carotid wall motion in association with vascular stiffness: A pilot study.
        Ultrasound Med Biol. 2016; 42: 2873-2886
        • Yli-Ollila H.
        • Tarvainen M.P.
        • Laitinen T.P.
        • Laitinen T.M.
        Transfer function analysis of the longitudinal motion of the common carotid artery wall.
        Front Physiol. 2016; 7: 651
        • Yousefi Rizi F.
        • Setarehdan S.K.
        • Behnam H.
        • Alizadeh Sani Z.
        Study of the effects of age and body mass index on the carotid wall vibration: Extraction methodology and analysis.
        Proc Inst Mech Eng H Journal of Engineering in Medicine. 2014; 228: 714-729
        • Zahnd G.
        • Boussel L.
        • Sérusclat A.
        • Vray D.
        Intramural shear strain can highlight the presence of atherosclerosis: A clinical in vivo study.
        in: 2011 IEEE International Ultrasonics Symposium, Orlando, FL, Piscataway, NJ IEEE, 2011: 1770-1773
        • Zahnd G.
        • Boussel S.
        • Sérusclat A.
        • Moulin P.
        • Orkisz M.
        • Vray D.
        Measurement of two-dimensional movement parameters of the carotid artery wall for early detection of arteriosclerosisa: Preliminary clinical study.
        Ultrasound Med Biol. 2011; 37: 1421-1429
        • Zahnd G.
        • Vray D.
        • Sérusclat A.
        • Alibay D.
        • Bartold M.
        • Brown A.
        • Durand M.
        • Jamieson L.M.
        • Kapellas K.
        • Maple-Brown L.J.
        Longitudinal displacement of the carotid wall and cardiovascular risk factors: Associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima–media thickness.
        Ultrasound Med Biol. 2012; 38: 1705-1715
        • Zahnd G.
        • Orkisz M.
        • Sérusclat A.
        • Moulin P.
        • Vray D.
        Evaluation of a Kalman-based block matching method to assess the bi-dimensional motion of the carotid artery wall in B-mode ultrasound sequences.
        Med Image Anal. 2013; 17: 573-585
        • Zahnd G.
        • Balocco S.
        • Sérusclat A.
        • Moulin P.
        • Orkisz M.
        • Vray D.
        Progressive attenuation of the longitudinal kinetics in the common carotid artery: Preliminary in vivo assessment.
        Ultrasound Med Biol. 2015; 41: 339-345
        • Zahnd G.
        • Salles S.
        • Liebgott H.
        • Vray D.
        • Sérusclat A.
        • Moulin P.
        Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo.
        Med Phys. 2015; 42: 820-830
        • Zahnd G.
        • Galbrun D.
        • Qorchi S.
        • Saito K.
        • Sérusclat A.
        • Moulin P.
        • Nagatsuka K.
        • Orkisz M.
        • Otake Y.
        • Sato Y.
        Pattern analysis of the kinematics in ultrasound videos of the common carotid artery–Application to cardiovascular risk evaluation. International Forum on Medical Imaging in Asia (IFMIA 2017), Tenbusu, Naha, Okinawa, Japan IEICE, 2017
        • Zahnd G.
        • Kapellas K.
        • van Hattem M.
        • van Dijk A.
        • Serusclat A.
        • Moulin P.
        • van der Lugt A.
        • Skilton M.
        • Orkisz M.
        A fully-automatic method to segment the carotid artery layers in ultrasound imaging: Application to quantify the compression-decompression pattern of the intima-media complex during the cardiac cycle.
        Ultrasound Med Biol. 2017; 43: 239-257
        • Zahnd G.
        • Saito K.
        • Nagatsuka K.
        • Otake Y.
        • Sato Y.
        Dynamic block matching to assess the longitudinal component of the dense motion field of the carotid artery wall in B-mode ultrasound sequences: Association with coronary artery disease.
        Med Phys. 2018; 45: 5041-5053
        • Zahnd G.
        • Orkisz M.
        • Dávila Serrano E.E.
        • Vray D.
        2019 CAROLAB – A platform to analyze carotid ultrasound data.
        in: 2019 IEEE Ultrasonics Symposium, Glasgow, Scotland, Piscataway, NJ IEEE, 2019: 463-466
        • Zambacevičienė M.
        • Jurkonis R.
        RF Ultrasound Based Longitudinal Motion Estimation of Carotid Artery Wall: Feasibility Study.
        in: Lhotska L. Sukupova L. Lackovic I. Ibbott G. World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings. 68/2. Springer, Singapore2019: 253-257 (2018)
        • Zhang L.
        • Yin J.K.
        • Duan Y.Y.
        • Liu X.
        • Xu L.
        • Wang J.
        • Yang Y.L.
        • Yuan L.J.
        • Cao T.S.
        Evaluation of carotid artery elasticity changes in patients with type 2 diabetes.
        Cardiovasc Diabetol. 2014; 13: 39