Advertisement

Surface Modification with Lactadherin Augments the Attachment of Sonazoid Microbubbles to Glycoprotein IIb/IIIa

  • Kentaro Otani
    Correspondence
    Address correspondence to: Kentaro Otani, Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita Osaka 565-8565, Japan.
    Affiliations
    Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
    Search for articles by this author
  • Atsunori Kamiya
    Affiliations
    Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
    Search for articles by this author
  • Takahiro Miyazaki
    Affiliations
    Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
    Search for articles by this author
  • Ayumi Koga
    Affiliations
    Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
    Search for articles by this author
  • Ayako Inatomi
    Affiliations
    Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
    Search for articles by this author
  • Mariko Harada-Shiba
    Affiliations
    Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan

    Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
    Search for articles by this author

      Abstract

      Arginine–glycine–aspartate (RGD)-carrying microbubbles (MBs) have been utilized as a specific contrast agent for glycoprotein IIb/IIIa (αIIbβ3 integrin)-expressing activated platelets in ultrasound molecular imaging. Recently, we found that surface modification with lactadherin provides the RGD motif on the surface of phosphatidylserine-containing clinically available MBs, Sonazoid. Here, we examined the potential of lactadherin-bearing Sonazoid MBs to be targeted MBs for glycoprotein IIb/IIIa using the custom-designed in vitro settings with recombinant αIIbβ3 integrin, activated platelets or erythrocyte-rich human clots. By modification of the surface with lactadherin, a large number of Sonazoid MBs were attached to the αIIbβ3 integrin-coated and platelet-immobilized plate. Additionally, the video intensity of clots after incubation with lactadherin-bearing Sonazoid MBs was significantly higher than that with unmodified Sonazoid MBs, implying the number of attached Sonazoid MBs was increased by the modification with lactadherin. Our results suggest that the lactadherin-bearing Sonazoid MBs have the potential to be thrombus-targeted MBs.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alonso A.
        • Della Martina A.
        • Stroick M.
        • Fatar M.
        • Griebe M.
        • Pochon S.
        • Schneider M.
        • Hennerici M.
        • Allemann E.
        • Meairs S.
        Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound.
        Stroke. 2007; 38: 1508-1514
        • Anderson C.R.
        • Hu X.
        • Zhang H.
        • Tlaxca J.
        • Decleves A.E.
        • Houghtaling R.
        • Sharma K.
        • Lawrence M.
        • Ferrara K.W.
        • Rychak J.J.
        Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent.
        Invest Radiol. 2011; 46: 215-224
        • Bennett J.S.
        Structure and function of the platelet integrin alphaIIbbeta3.
        J Clin Invest. 2005; 115: 3363-3369
        • Bogdanowich-Knipp S.J.
        • Chakrabarti S.
        • Williams T.D.
        • Dillman R.K.
        • Siahaan T.J.
        Solution stability of linear vs. cyclic RGD peptides.
        J Pept Res. 1999; 53: 530-541
        • Brown A.T.
        • Flores R.
        • Hamilton E.
        • Roberson P.K.
        • Borrelli M.J.
        • Culp W.C.
        Microbubbles improve sonothrombolysis in vitro and decrease hemorrhage in vivo in a rabbit stroke model.
        Invest Radiol. 2011; 46: 202-207
        • Cai H.
        • Conti P.S.
        RGD-based PET tracers for imaging receptor integrin alphav beta3 expression.
        J Labelled Comp Radiopharm. 2013; 56: 264-279
        • Chen X.
        • Leeman J.E.
        • Wang J.
        • Pacella J.J.
        • Villanueva F.S.
        New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.
        Ultrasound Med Biol. 2014; 40: 258-262
        • Culp W.C.
        • Flores R.
        • Brown A.T.
        • Lowery J.D.
        • Roberson P.K.
        • Hennings L.J.
        • Woods S.D.
        • Hatton J.H.
        • Culp B.C.
        • Skinner R.D.
        • Borrelli M.J.
        Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke.
        Stroke. 2011; 42: 2280-2285
        • Hagisawa K.
        • Nishioka T.
        • Suzuki R.
        • Takizawa T.
        • Maruyama K.
        • Takase B.
        • Ishihara M.
        • Kurita A.
        • Yoshimoto N.
        • Ohsuzu F.
        • Kikuchi M.
        Enhancement of ultrasonic thrombus imaging using novel liposomal bubbles targeting activated platelet glycoprotein IIb/IIIa complex—In vitro and in vivo study.
        Int J Cardiol. 2011; 152: 202-206
        • Hanayama R.
        • Tanaka M.
        • Miwa K.
        • Shinohara A.
        • Iwamatsu A.
        • Nagata S.
        Identification of a factor that links apoptotic cells to phagocytes.
        Nature. 2002; 417: 182-187
        • Hu G.
        • Liu C.
        • Liao Y.
        • Yang L.
        • Huang R.
        • Wu J.
        • Xie J.
        • Bundhoo K.
        • Liu Y.
        • Bin J.
        Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo.
        Thromb Haemost. 2012; 107: 172-183
        • Kato M.
        • Mrksich M.
        Using model substrates to study the dependence of focal adhesion formation on the affinity of integrin–ligand complexes.
        Biochemistry. 2004; 43: 2699-2707
        • Lu Y.
        • Wang J.
        • Huang R.
        • Chen G.
        • Zhong L.
        • Shen S.
        • Zhang C.
        • Li X.
        • Cao S.
        • Liao W.
        • Liao Y.
        • Bin J.
        Microbubble-mediated sonothrombolysis improves outcome after thrombotic microembolism-induced acute ischemic stroke.
        Stroke. 2016; 47: 1344-1353
        • Ma Y.Q.
        • Qin J.
        • Plow E.F.
        Platelet integrin alpha(IIb)beta(3): Activation mechanisms.
        J Thromb Haemost. 2007; 5: 1345-1352
        • Neutzner M.
        • Lopez T.
        • Feng X.
        • Bergmann-Leitner E.S.
        • Leitner W.W.
        • Udey M.C.
        MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis.
        Cancer Res. 2007; 67: 6777-6785
        • Otani K.
        • Yamahara K.
        Feasibility of lactadherin-bearing clinically available microbubbles as ultrasound contrast agent for angiogenesis.
        Mol Imaging Biol. 2013; 15: 534-541
        • Otani K.
        • Nishimura H.
        • Kamiya A.
        • Harada-Shiba M.
        Simplified preparation of alphavbeta3 integrin-targeted microbubbles based on a clinically available ultrasound contrast agent: Validation in a tumor-bearing mouse model.
        Ultrasound Med Biol. 2018; 44: 1063-1073
        • Phillips D.R.
        • Charo I.F.
        • Parise L.V.
        • Fitzgerald L.A.
        The platelet membrane glycoprotein IIb–IIIa complex.
        Blood. 1988; 71: 831-843
        • Silvestre J.S.
        • Thery C.
        • Hamard G.
        • Boddaert J.
        • Aguilar B.
        • Delcayre A.
        • Houbron C.
        • Tamarat R.
        • Blanc-Brude O.
        • Heeneman S.
        • Clergue M.
        • Duriez M.
        • Merval R.
        • Levy B.
        • Tedgui A.
        • Amigorena S.
        • Mallat Z.
        Lactadherin promotes VEGF-dependent neovascularization.
        Nat Med. 2005; 11: 499-506
        • Sontum P.C.
        Physicochemical characteristics of Sonazoid, a new contrast agent for ultrasound imaging.
        Ultrasound Med Biol. 2008; 34: 824-833
        • Takeuchi M.
        • Ogunyankin K.
        • Pandian N.G.
        • McCreery T.P.
        • Sweitzer R.H.
        • Caldwell V.E.
        • Unger E.C.
        • Avelar E.
        • Sheahan M.
        • Connolly R.
        Enhanced visualization of intravascular and left atrial appendage thrombus with the use of a thrombus-targeting ultrasonographic contrast agent (MRX-408A1): In vivo experimental echocardiographic studies.
        J Am Soc Echocardiogr. 1999; 12: 1015-1021
        • Topol E.J.
        • Byzova T.V.
        • Plow E.F.
        Platelet GPIIb–IIIa blockers.
        Lancet. 1999; 353: 227-231
        • Unger E.C.
        • McCreery T.P.
        • Sweitzer R.H.
        • Shen D.
        • Wu G.
        In vitro studies of a new thrombus-specific ultrasound contrast agent.
        Am J Cardiol. 1998; 81: 58G-61G
        • Wang X.
        • Hagemeyer C.E.
        • Hohmann J.D.
        • Leitner E.
        • Armstrong P.C.
        • Jia F.
        • Olschewski M.
        • Needles A.
        • Peter K.
        • Ahrens I.
        Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: Validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice.
        Circulation. 2012; 125: 3117-3126
        • Wang X.
        • Gkanatsas Y.
        • Palasubramaniam J.
        • Hohmann J.D.
        • Chen Y.C.
        • Lim B.
        • Hagemeyer C.E.
        • Peter K.
        Thrombus-targeted theranostic microbubbles: A new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis.
        Theranostics. 2016; 6: 726-738
        • Wu W.
        • Wang Y.
        • Shen S.
        • Wu J.
        • Guo S.
        • Su L.
        • Hou F.
        • Wang Z.
        • Liao Y.
        • Bin J.
        In vivo ultrasound molecular imaging of inflammatory thrombosis in arteries with cyclic Arg–Gly–Asp-modified microbubbles targeted to glycoprotein IIb/IIIa.
        Invest Radiol. 2013; 48: 803-812
        • Wu J.
        • Xie F.
        • Lof J.
        • Sayyed S.
        • Porter T.R.
        Utilization of modified diagnostic ultrasound and microbubbles to reduce myocardial infarct size.
        Heart. 2015; 101: 1468-1474
        • Xie F.
        • Lof J.
        • Everbach C.
        • He A.
        • Bennett R.M.
        • Matsunaga T.
        • Johanning J.
        • Porter T.R.
        Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles.
        JACC Cardiovasc Imaging. 2009; 2: 511-518
        • Xie F.
        • Lof J.
        • Matsunaga T.
        • Zutshi R.
        • Porter T.R.
        Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions.
        Circulation. 2009; 119: 1378-1385
        • Zhou Y.
        • Chakraborty S.
        • Liu S.
        Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT.
        Theranostics. 2011; 1: 58-82