Advertisement

Quantification of Vaporised Targeted Nanodroplets Using High-Frame-Rate Ultrasound and Optics

      Abstract

      Molecular targeted nanodroplets that can extravasate beyond the vascular space have great potential to improve tumor detection and characterisation. High-frame-rate ultrasound, on the other hand, is an emerging tool for imaging at a frame rate one to two orders of magnitude higher than those of existing ultrasound systems. In this study, we used high-frame-rate ultrasound combined with optics to study the acoustic response and size distribution of folate receptor (FR)-targeted versus non-targeted (NT)-nanodroplets in vitro with MDA-MB-231 breast cancer cells immediately after ultrasound activation. A flow velocity mapping technique, Stokes’ theory and optical microscopy were used to estimate the size of both floating and attached vaporised nanodroplets immediately after activation. The floating vaporised nanodroplets were on average more than seven times larger than vaporised nanodroplets attached to the cells. The results also indicated that the acoustic signal of vaporised FR-targeted-nanodroplets persisted after activation, with 70% of the acoustic signals still present 1 s after activation, compared with the vaporised NT-nanodroplets, for which only 40% of the acoustic signal remained. The optical microscopic images revealed on average six times more vaporised FR-targeted-nanodroplets generated with a wider range of diameters (from 4 to 68 µm) that were still attached to the cells, compared with vaporised NT-nanodroplets (from 1 to 7 µm) with non-specific binding after activation. The mean size of attached vaporised FR-targeted-nanodroplets was on average about threefold larger than that of attached vaporised NT-nanodroplets. Taking advantage of high-frame-rate contrast-enhanced ultrasound and optical microscopy, this study offers an improved understanding of the vaporisation of the targeted nanodroplets in terms of their size and acoustic response in comparison with NT-nanodroplets. Such understanding would help in the design of optimised methodology for imaging and therapeutic applications.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Antonios N.P.
        • James J.C.
        Superharmonic microbubble Doppler effect in ultrasound therapy.
        Phys Med Biol. 2016; 61: 6154
        • Aydin O.
        • Vlaisavljevich E.
        • Yuksel Durmaz Y.
        • Xu Z.
        • ElSayed M.E.
        Noninvasive ablation of prostate cancer spheroids using acoustically-activated nanodroplets.
        Mol Pharm. 2016; 13: 4054-4065
        • Brown J.
        • Christensen-Jeffries K.
        • Harput S.
        • Dunsby C.
        • Tang M.X.
        • Eckersley R.J.
        Investigation of microbubble detection methods for super-resolution imaging of microvasculature.
        Proc IEEE Int Ultrason Symp. 2017; : 1-4
        • Butler B.D.
        • Hills B.A.
        The lung as a filter for microbubbles.
        J Appl Physiol. 1979; 47: 537-543
        • Chen C.
        • Ke J.
        • Zhou X.E.
        • Yi W.
        • Brunzelle J.S.
        • Li J.
        • Yong E.L.
        • Xu H.E.
        • Melcher K.
        Structural basis for molecular recognition of folic acid by folate receptors.
        Nature. 2013; 500: 486-489
        • Dijkmans P.A.
        • Juffermans L.J.M.
        • Musters R.J.P.
        • van Wamel A.
        • ten Cate F.J.
        • van Gilst W.
        • Visser C.A.
        • de Jong N.
        • Kamp O.
        Microbubbles and ultrasound: From diagnosis to therapy.
        Eur J Echocardiogr. 2004; 5: 245-246
        • Eckersley R.J.
        • Chin C.T.
        • Burns P.N.
        Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power.
        Ultrasound Med Biol. 2005; 31: 213-219
        • Ernsting M.J.
        • Murakami M.
        • Roy A.
        • Li S.D.
        Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.
        J Control Release. 2013; 172: 782-794
        • Escribá P.V.
        • González-Ros J.M.
        • Goñi F.M.
        • Kinnunen P.K.J.
        • Vigh L.
        • Sánchez-Magraner L.
        • Fernández A.M.
        • Busquets X.
        • Horváth I.
        • Barceló-Coblijn G.
        Membranes: A meeting point for lipids, proteins and therapies.
        J Cell Mol Med. 2008; 12: 829-875
        • Hadinger K.P.
        • Marshalek J.P.
        • Sheeran P.S.
        • Dayton P.A.
        • Matsunaga T.O.
        Optimization of phase-change contrast agents for targeting MDA-MB-231 breast cancer cells.
        Ultrasound Med Biol. 2018; 44: 2728-2738
        • Himanshu S.
        • Kenneth B.B.
        • Shenwen H.
        • Tao P.
        • Shaoling H.
        • David D.M.
        • Christy K.H.
        In vitro thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas.
        Phys Med Biol. 2017; 62: 517
        • Ji T.
        • Zhao Y.
        • Ding Y.
        • Nie G.
        Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications.
        Adv Mater. 2013; 25: 3508-3525
        • Kasoji S.K.
        • Pattenden S.G.
        • Malc E.P.
        • Jayakody C.N.
        • Tsuruta J.K.
        • Mieczkowski P.A.
        • Janzen W.P.
        • Dayton P.A.
        Cavitation enhancing nanodroplets mediate efficient DNA fragmentation in a bench top ultrasonic water bath.
        PLoS One. 2015; 10e0133014
        • Kim U.
        • Shu C.W.
        • Dane K.Y.
        • Daugherty P.S.
        • Wang J.Y.J.
        • Soh H.T.
        Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis.
        Proc Natl Acad Sci USA. 2007; 104: 20708-20712
        • Kripfgans O.D.
        • Fowlkes J.B.
        • Miller D.L.
        • Eldevik O.P.
        • Carson P.L.
        Acoustic droplet vaporization for therapeutic and diagnostic applications.
        Ultrasound Med Biol. 2000; 26: 1177-1189
        • Lajoinie G.
        • Gelderblom E.
        • Chlon C.
        • Bohmer M.
        • Steenbergen W.
        • de Jong N.
        • Manohar S.
        • Versluis M.
        Ultrafast vapourization dynamics of laser-activated polymeric microcapsules.
        Nat Commun. 2014; 5: 3671
        • Leow C.H.
        • Bazigou E.
        • Eckersley R.J.
        • Alfred C.
        • Weinberg P.D.
        • Tang M.X.
        Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation.
        Ultrasound Med Biol. 2015; 41: 2913-2925
        • Lin S.
        • Zhang G.
        • Leow C.H.
        • Matsunaga O.T.
        • Tang M.X.
        Vaporising phase change ultrasound contrast agent in microvascular confinement.
        Proc IEEE Int Ultrason Symp. 2016; : 1-4
        • Lin S.
        • Shah A.
        • Hernández-Gil J.
        • Stanziola A.
        • Harriss B.I.
        • Matsunaga T.O.
        • Long N.
        • Bamber J.
        • Tang M.X.
        Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging.
        Photoacoustics. 2017; 6: 26-36
        • Lin S.
        • Zhang G.
        • Leow C.H.
        • Tang M.X.
        Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents.
        Phys Med Biol. 2017; 62: 6884
        • Liu W.W.
        • Liu S.W.
        • Liou Y.R.
        • Wu Y.H.
        • Yang Y.C.
        • Wang C.R.
        • Li P.C.
        Nanodroplet-vaporization-assisted sonoporation for highly effective delivery of photothermal treatment.
        Sci Rep. 2016; 6: 24753
        • Loughran J.
        • Sennoga C.
        • R J.E.
        • Tang M.X.
        Effect of ultrasound on adherent microbubble contrast agents.
        Phys Med Biol. 2012; 57: 6999-7014
        • Marshalek J.P.
        • Sheeran P.S.
        • Ingram P.
        • Dayton P.A.
        • Witte R.S.
        • Matsunaga T.O.
        Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro.
        J Control Release. 2016; 243: 69-77
        • Matsunaga T.O.
        • Sheeran P.S.
        • Luois S.
        • Streeter J.E.
        • Mullin L.B.
        • Banerjee B.
        • Dayton P.A.
        Phase-change nanoparticles using highly volatile perfluorocarbons: Toward a platform for extravascular ultrasound imaging.
        Theranostics. 2012; 2: 1185-1198
        • Mercado K.P.
        • Radhakrishnan K.
        • Stewart K.
        • Snider L.
        • Ryan D.
        • Haworth K.J.
        Size-isolation of ultrasound-mediated phase change perfluorocarbon droplets using differential centrifugation.
        J Acoust Soc Am. 2016; 139: EL142-EL148
        • Moncion A.
        • Arlotta K.J.
        • Kripfgans O.D.
        • Fowlkes J.B.
        • Carson P.L.
        • Putnam A.J.
        • Franceschi R.T.
        • Fabiilli M.L.
        Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications.
        Ultrasound Med Biol. 2016; 42: 257-271
        • Montaldo G.
        • Tanter M.
        • Bercoff J.
        • Benech N.
        • Fink M.
        Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 489-506
        • Morris R.T.
        • Joyrich R.N.
        • Naumann R.W.
        • Shah N.P.
        • Maurer A.H.
        • Strauss H.W.
        • Uszler J.M.
        • Symanowski J.T.
        • Ellis P.R.
        • Harb W.A.
        Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide).
        Ann Oncol. 2014; 25: 852-858
        • Mountford P.A.
        • Thomas A.N.
        • Borden M.A.
        Thermal activation of superheated lipid-coated perfluorocarbon drops.
        Langmuir. 2015; 31: 4627-4634
        • Moyer L.C.
        • Timbie K.F.
        • Sheeran P.S.
        • Price R.J.
        • Miller G.W.
        • Dayton P.A.
        High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.
        J Ther Ultrasound. 2015; 3: 7
        • Nakamura Y.
        • Mochida A.
        • Choyke P.L.
        • Kobayashi H.
        Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer?.
        Bioconjug Chem. 2016; 27: 2225-2238
        • Naumann R.W.
        • Coleman R.L.
        • Burger R.A.
        • Sausville E.A.
        • Kutarska E.
        • Ghamande S.A.
        • Gabrail N.Y.
        • DePasquale S.E.
        • Nowara E.
        • Gilbert L.
        • Gersh R.H.
        • Teneriello M.G.
        • Harb W.A.
        • Konstantinopoulos P.A.
        • Penson R.T.
        • Symanowski J.T.
        • Lovejoy C.D.
        • Leamon C.P.
        • Morgenstern D.E.
        • Messmann R.A.
        Precedent: A randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer.
        J Clin Oncol. 2013; 31: 4400-4406
        • Oleksandr S.
        • Laura S.
        • Michel V.
        • Detlef L.
        The role of gas in ultrasonically driven vapor bubble growth.
        Phys Med Biol. 2013; 58: 2523
        • Parker N.
        • Turk M.J.
        • Westrick E.
        • Lewis J.D.
        • Low P.S.
        • Leamon C.P.
        Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay.
        Anal Biochem. 2005; 338: 284-293
        • Parmar R.
        • Majumder S.K.
        Terminal rise velocity, size distribution and stability of microbubble suspension.
        Asia-Pacific J Chem Eng. 2015; 10: 450-465
        • Porter T.R.
        • Arena C.
        • Sayyed S.
        • Lof J.
        • High R.R.
        • Xie F.
        • Dayton P.A.
        Targeted transthoracic acoustic activation of systemically administered nanodroplets to detect myocardial perfusion abnormalities.
        Circ Cardiovasc Imaging. 2016; 9e003770
        • Postema M.
        • Marmottant P.
        • Lancée C.T.
        • Hilgenfeldt S.
        • Jong N.D.
        Ultrasound-induced microbubble coalescence.
        Ultrasound Med Biol. 2004; 30: 1337-1344
        • Raymond J.L.
        • Luan Y.
        • Peng T.
        • Huang S.L.
        • McPherson D.D.
        • Versluis M.
        • de Jong N.
        • Holland C.K.
        Loss of gas from echogenic liposomes exposed to pulsed ultrasound.
        Phys Med Biol. 2016; 61: 8321-8339
        • Sennoga C.A.
        • Mahue V.
        • Loughran J.
        • Casey J.
        • Seddon J.M.
        • Tang M.
        • Eckersley R.J.
        On sizing and counting of microbubbles using optical microscopy.
        Ultrasound Med Biol. 2010; 36: 2093-2096
        • Sheeran P.S.
        • Dayton P.A.
        Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: Current progress, challenges, and prospects.
        Scientifica (Cairo). 2014; 2014579684
        • Sheeran P.S.
        • Wong V.P.
        • Luois S.
        • McFarland R.J.
        • Ross W.D.
        • Feingold S.
        • Matsunaga T.O.
        • Dayton P.A.
        Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging.
        Ultrasound Med Biol. 2011; 37: 1518-1530
        • Sheeran P.S.
        • Streeter J.E.
        • Mullin L.B.
        • Matsunaga T.O.
        • Dayton P.A.
        Toward ultrasound molecular imaging with phase-change contrast agents: An in vitro proof of principle.
        Ultrasound Med Biol. 2013; 39: 893-902
        • Sheeran P.S.
        • Rojas J.D.
        • Puett C.
        • Hjelmquist J.
        • Arena C.B.
        • Dayton P.A.
        Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.
        Ultrasound Med Biol. 2015; 41: 814-831
        • Sheeran P.S.
        • Daghighi Y.
        • Yoo K.
        • Williams R.
        • Cherin E.
        • Foster F.S.
        • Burns P.N.
        Image-guided ultrasound characterization of volatile sub-micron phase-shift droplets in the 20–40 MHz frequency range.
        Ultrasound Med Biol. 2016; 42: 795-807
        • Sheeran P.S.
        • Matsuura N.
        • Borden M.A.
        • Williams R.
        • Matsunaga T.O.
        • Burns P.N.
        • Dayton P.A.
        Methods of generating sub-micron phase-shift perfluorocarbon droplets for applications in medical ultrasonography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 64: 252-263
        • Shen C.C.
        • Chou Y.H.
        • Li P.C.
        Pulse inversion techniques in ultrasonic nonlinear imaging.
        J Med Ultrasound. 2005; 13: 3-17
        • Shpak O.
        • Verweij M.
        • Vos H.J.
        • de Jong N.
        • Lohse D.
        • Versluis M.
        Acoustic droplet vaporization is initiated by superharmonic focusing.
        Proc Natl Acad Sci USA. 2014; 111: 1697-1702
        • Tang M.X.
        • Eckersley R.J.
        Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2006; 53: 2406-2415
        • Toporkiewicz M.
        • Meissner J.
        • Matusewicz L.
        • Czogalla A.
        • Sikorski A.F.
        Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: Principles, hopes, and challenges.
        Int J Nanomed. 2015; 10: 1399-1414
        • Tremblay-Darveau C.
        • Williams R.
        • Milot L.
        • Bruce M.
        • Burns P.N.
        Combined perfusion and Doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2014; 61: 1988-2000
        • Vlaisavljevich E.
        • Owens G.
        • Lundt J.
        • Teofilovic D.
        • Ives K.
        • Duryea A.
        • Bertolina J.
        • Welling T.H.
        • Xu Z.
        Non-invasive liver ablation using histotripsy: Preclinical safety study in an in vivo porcine model.
        Ultrasound Med Biol. 2017; 43: 1237-1251
        • William T.S.
        • Flemming F.
        • Priya V.
        • Audun T.
        • Jonny Ø.
        • Barry B.G.
        The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro.
        Phys Med Biol. 2006; 51: 4031
        • Winnard Jr, P.T.
        • Pathak A.P.
        • Dhara S.
        • Cho S.Y.
        • Raman V.
        • Pomper M.G.
        Molecular imaging of metastatic potential.
        J Nucl Med. 2008; 49: 96S-112S
        • Zhang G.
        • Lin S.
        • Leow C.H.
        • Pang K.
        • Hernández-Gil J.
        • Chee M.
        • Long N.J.
        • Matsunaga T.O.
        • Tang M.X.
        Acoustic response of targeted nanodroplets post-activation using high frame rate imaging.
        Proc IEEE Int Ultrason Symp. 2017; : 1-4
        • Zhang G.
        • Harput S.
        • Hu H.
        • Christensen-Jeffries K.
        • Zhu J.
        • Brown J.
        • Dunsby C.
        • Eckersley R.J.
        • Tang M.X.
        Fast acoustic wave sparsely activated localization microscopy (fast-AWSALM) using octafluoropropane nanodroplets.
        Proc IEEE Int Ultrason Symp. 2018; (https://ieeexplore.ieee.org/abstract/document/8580192): 1-4
        • Zhang G.
        • Harput S.
        • Lin S.
        • Christensen-Jeffries K.
        • Leow C.H.
        • Brown J.
        • Dunsby C.
        • Eckersley R.J.
        • Tang M.X.
        Acoustic wave sparsely activated localization microscopy (AWSALM): Super-resolution ultrasound imaging using acoustic activation and deactivation of nanodroplets.
        Appl Phys Lett. 2018; 113014101
        • Zhang G.
        • Harput S.
        • Lin S.
        • Leow C.H.
        • Christensen-Jeffries K.
        • Brown J.
        • Dunsby C.
        • Eckersley R.J.
        • Tang M.X.
        Super-localisation ultrasound imaging using sparse activation of low-boiling-point nanodroplets.
        in: 23rd European Symposium on Ultrasound Contrast Imaging, Rotterdam, The Netherlands2018: 171-174
        • Zhou Q.L.
        • Chen Z.Y.
        • Wang Y.X.
        • Yang F.
        • Lin Y.
        • Liao Y.Y.
        Ultrasound-mediated local drug and gene delivery using nanocarriers.
        Biomed Res Int. 2014; 2014963891
        • Zhu D.
        • Wu S.
        • Hu C.
        • Chen Z.
        • Wang H.
        • Fan F.
        • Qin Y.
        • Wang C.
        • Sun H.
        • Leng X.
        • Kong D.
        • Zhang L.
        Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma.
        Acta Biomater. 2017; 58: 399-412