Advertisement

3-D Longitudinal Imaging of Tumor Angiogenesis in Mice in Vivo Using Ultrafast Doppler Tomography

      Abstract

      Angiogenesis, the formation of new vessels, is one of the key mechanisms in tumor development and an appealing target for therapy. Non-invasive, high-resolution, high-sensitivity, quantitative 3-D imaging techniques are required to correctly depict tumor heterogeneous vasculature over time. Ultrafast Doppler was recently introduced and provides an unprecedented combination of resolution, penetration depth and sensitivity without requiring any contrast agents. The technique was further extended to three dimensions with ultrafast Doppler tomography (UFD-T). In this work, UFD-T was applied to the monitoring of tumor angiogenesis in vivo, providing structural and functional information at different stages of development. UFD-T volume renderings revealed that our murine model's vasculature stems from pre-existing vessels and sprouts to perfuse the whole volume as the tumor grows until a critical size is reached. Then, as the network becomes insufficient, the tumor core is no longer irrigated because the vasculature is concentrated mainly in the periphery. In addition to spatial distribution and growth patterns, UFD-T allowed a quantitative analysis of vessel size and length, revealing that the diameter distribution of vessels remained relatively constant throughout tumor growth. The network is dominated by small vessels at all stages of tumor development, with more than 74% of the vessels less than 200 µm in diameter. This study also found that cumulative vessel length is more closely related to tumor radius than volume, indicating that the vascularization becomes insufficient when a critical mass is reached. UFD-T was also compared with dynamic contrast-enhanced ultrasound and found to provide complementary information regarding the link between structure and perfusion. In conclusion, UFD-T is capable of in vivo quantitative assessment of the development of tumor vasculature (vessels with blood speed >1 mm/s [sensitivity limit] assessed with a resolution limit of 80 µm) in 3 dimensions. The technique has very interesting potential as a tool for treatment monitoring, response assessment and treatment planning for optimal drug efficiency.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agrawal G.
        • Su M.Y.
        • Nalcioglu O.
        • Feig S.A.
        • Chen J.H.
        Significance of breast lesion descriptors in the ACR BI-RADS MRI lexicon.
        Cancer. 2009; 115: 1363-1380
        • Barrois G.
        • Coron A.
        • Payen T.
        • Dizeux A.
        • Bridal S.L.
        A multiplicative model for improving microvascular flow estimation in dynamic contrast-enhanced ultrasound (DCE-US): Theory and experimental validation.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2013; 60: 2284-2294
        • Bercoff J.
        • Montaldo G.
        • Loupas T.
        • Savery D.
        • Mézière F.
        • Fink M.
        • Tanter M.
        Ultrafast compound Doppler imaging: Providing full blood flow characterization.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2011; 58: 134-147
        • Bergers G.
        • Hanahan D.
        Modes of resistance to anti-angiogenic therapy.
        Nat Rev Cancer. 2008; 8: 592-603
        • Cao Y.
        • Langer R.
        A review of Judah Folkman's remarkable achievements in biomedicine.
        Proc Natl Acad Sci USA. 2008; 105: 13203-13205
        • Carmeliet P.
        • Jain R.K.
        Angiogenesis in cancer and other diseases.
        Nature. 2000; 407: 249-257
        • Carmeliet P.
        • Dor Y.
        • Herbert J.M.
        • Fukumura D.
        • Brusselmans K.
        • Dewerchin M.
        • Neeman M.
        • Bono F.
        • Abramovitch R.
        • Maxwell P.
        • Koch C.J.
        • Ratcliffe P.
        • Moons L.
        • Jain R.K.
        • Collen D.
        • Keshert E.
        Role of HIF-1A in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis.
        Nature. 1998; 394: 485-490
        • de Jong M.
        • Essers J.
        • van Weerden W.M.
        Imaging preclinical tumour models: Improving translational power.
        Nat Rev Cancer. 2014; 14: 481-493
        • Demené C.
        • Deffieux T.
        • Pernot M.
        • Osmanski B.F.
        • Biran V.
        • Gennisson J.L.
        • Sieu L.A.
        • Bergel A.
        • Franqui S.
        • Correas J.M.
        • Cohen I.
        • Baud O.
        • Tanter M.
        Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity.
        IEEE Trans Med Imaging. 2015; 34: 2271-2285
        • Demené C.
        • Tiran E.
        • Sieu L.A.
        • Bergel A.
        • Gennisson J.L.
        • Pernot M.
        • Deffieux T.
        • Cohen I.
        • Tanter M.
        4D microvascular imaging based on ultrafast Doppler tomography.
        NeuroImage. 2016; 127: 472-483
        • Dighe S.
        • Blake H.
        • Jeyadevan N.
        • Castellano I.
        • Koh D.-M.
        • Orton M.
        • Chandler I.
        • Swift I.
        • Brown G.
        Perfusion CT vascular parameters do not correlate with immunohistochemically derived microvessel density count in colorectal tumors.
        Radiology. 2013; 268: 400-410
        • Dizeux A.
        • Payen T.
        • Barrois G.
        • Le Guillou Buffello D.
        • Bridal S.L.
        Reproducibility of contrast-enhanced ultrasound in mice with controlled injection.
        Mol Imaging Biol. 2016; 18: 651-658
        • Dizeux A.
        • Payen T.
        • Le Guillou-Buffello D.
        • Comperat E.
        • Gennisson J.-L.
        • Tanter M.
        • Oelze M.
        • Bridal S.L.
        In vivo multiparametric ultrasound imaging of structural and functional tumor modifications during therapy.
        Ultrasound Med Biol. 2017; 43: 2000-2012
        • Dvorak H.F.
        Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing.
        N Engl J Med. 1986; 315: 1650-1659
        • Ehling J.
        • Theek B.
        • Gremse F.
        • Baetke S.
        • Möckel D.
        • Maynard J.
        • Ricketts S.A.
        • Grüll H.
        • Neeman M.
        • Knuechel R.
        • Lederle W.
        • Kiessling F.
        • Lammers T.
        Micro-CT imaging of tumor angiogenesis: Quantitative measures describing micromorphology and vascularization.
        Am J Pathol. 2014; 184: 431-441
        • Ellis L.M.
        • Hicklin D.J.
        Pathways mediating resistance to vascular endothelial growth factor–targeted therapy.
        Clin Cancer Res. 2008; 14: 6371-6375
        • Errico C.
        • Pierre J.
        • Pezet S.
        • Desailly Y.
        • Lenkei Z.
        • Couture O.
        • Tanter M.
        Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.
        Nature. 2015; 527: 499-502
        • Ferrara K.W.
        • Merritt C.R.B.
        • Burns P.N.
        • Stuart Foster F.
        • Mattrey R.F.
        • Wickline S.A.
        Evaluation of tumor angiogenesis with US: Imaging, Doppler, and contrast agents.
        Acad Radiol. 2000; 7: 824-839
        • Foiret J.
        • Zhang H.
        • Ilovitsh T.
        • Mahakian L.
        • Tam S.
        • Ferrara K.W.
        Ultrasound localization microscopy to image and assess microvasculature in a rat kidney.
        Sci Rep. 2017; 7: 13662
        • Folkman J.
        Tumor angiogenesis: Therapeutic implications.
        N Engl J Med. 1971; 285: 1182-1186
        • Folkman J.
        What is the evidence that tumors are angiogenesis dependent?.
        J Natl Cancer Inst. 1990; 82: 4-7
        • Folkman J.
        Angiogenesis in cancer, vascular, rheumatoid and other disease.
        Nat Med. 1995; 1: 27-31
        • Gilbertson R.J.
        • Rich J.N.
        Making a tumour's bed: Glioblastoma stem cells and the vascular niche.
        Nat Rev Cancer. 2007; 7: 733-736
        • Gillies R.J.
        • Schornack P.A.
        • Secomb T.W.
        • Raghunand N.
        Causes and effects of heterogeneous perfusion in tumors.
        Neoplasia. 1999; 1: 197-207
        • Goel S.
        • Duda D.G.
        • Xu L.
        • Munn L.L.
        • Boucher Y.
        • Fukumura D.
        • Jain R.K.
        Normalization of the vasculature for treatment of cancer and other diseases.
        Physiol Rev. 2011; 91: 1071-1121
        • Harada H.
        • Xie X.
        • Itasaka S.
        • Zeng L.
        • Zhu Y.
        • Morinibu A.
        • Shinomiya K.
        • Hiraoka M.
        Diameter of tumor blood vessels is a good parameter to estimate HIF-1-active regions in solid tumors.
        Biochem Biophys Res Commun. 2008; 373: 533-538
        • Hashizume H.
        • Baluk P.
        • Morikawa S.
        • McLean J.W.
        • Thurston G.
        • Roberge S.
        • Jain R.K.
        • McDonald D.M.
        Openings between defective endothelial cells explain tumor vessel leakiness.
        Am J Pathol. 2000; 156: 1363-1380
        • Hingot V.
        • Errico C.
        • Tanter M.
        • Couture O.
        Subwavelength motion-correction for ultrafast ultrasound localization microscopy.
        Ultrasonics. 2017; 77: 17-21
        • Jain R.K.
        Determinants of tumor blood flow: A review.
        Cancer Res. 1988; 48: 2641-2658
        • Jain R.K.
        Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy.
        Nat Med. 2001; 7: 987-989
        • Jain R.K.
        Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy.
        Science. 2005; 307: 58-62
        • Jain R.
        • Gutierrez J.
        • Narang J.
        • Scarpace L.
        • Schultz L.R.
        • Lemke N.
        • Patel S.C.
        • Mikkelsen T.
        • Rock J.P.
        In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas.
        Am J Neuroradiol. 2011; 32: 388-394
        • Jensen J.A.
        • Svendsen N.B.
        Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1992; 39: 262-267
        • Jensen J.A.
        FIELD: A Program for Simulating Ultrasound Systems.
        10th nordicbaltic conference on biomedical imaging. Part 1:1996; vol. 4: 351-353
        • Junaid T.O.
        • Bradley R.S.
        • Lewis R.M.
        • Aplin J.D.
        • Johnstone E.D.
        Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease.
        Sci Rep. 2017; 7: 4144
        • Kiessling F.
        • Greschus S.
        • Lichy M.P.
        • Bock M.
        • Fink C.
        • Vosseler S.
        • Moll J.
        • Mueller M.M.
        • Fusenig N.E.
        • Traupe H.
        • Semmler W.
        Volumetric computed tomography (VCT): A new technology for noninvasive, high-resolution monitoring of tumor angiogenesis.
        Nat Med. 2004; 10: 1133-1138
        • Kobayashi H.
        • Kawamoto S.
        • Saga T.
        • Sato N.
        • Hiraga A.
        • Konishi J.
        • Togashi K.
        • Brechbiel M.W.
        Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer-based MR contrast agents.
        J Magn Reson Imaging. 2001; 14: 705-713
        • Kourembanas S.
        • Hannan R.L.
        • Faller D V.
        Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells.
        J Clin Invest. 1990; 86: 670-674
        • Laufer J.
        • Johnson P.
        • Zhang E.
        • Treeby B.
        • Cox B.
        • Pedley B.
        • Beard P.
        In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy.
        J Biomed Opt. 2012; 17056016
        • Lee D.T.
        Medial Axis Transformation of a planar shape.
        IEEE Trans Pattern Anal Mach Intell. 1982; PAMI-4: 363-369
        • Leunig M.
        • Yuan F.
        • Menger M.D.
        • Boucher Y.
        • Goetz A.E.
        • Messmer K.
        • Jain R.K.
        Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LSI74 T in SCID mice.
        Cancer Res. 1992; 52: 6553-6560
        • Macé E.
        • Montaldo G.
        • Osmanski B.
        • Cohen I.
        • Fink M.
        • Tanter M.
        Functional ultrasound imaging of the brain: Theory and basic principles.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2013; 60: 492-506
        • Montaldo G.
        • Tanter M.
        • Bercoff J.
        • Benech N.
        • Fink M.
        Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 489-506
        • Nagy J.A.
        • Chang S.H.
        • Shih S.C.
        • Dvorak A.M.
        • Dvorak H.F.
        Heterogeneity of the tumor vasculature.
        Semin Thromb Hemost. 2010; 36: 321-331
        • Opacic T.
        • Dencks S.
        • Theek B.
        • Piepenbrock M.
        • Ackermann D.
        • Rix A.
        • Lammers T.
        • Stickeler E.
        • Delorme S.
        • Schmitz G.
        • Kiessling F.
        Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization.
        Nat Commun. 2018; 9 (:1527. Available at:)
        • Payen T.
        • Dizeux A.
        • Baldini C.
        • Le Guillou-Buffello D.
        • Lamuraglia M.
        • Comperat E.
        • Lucidarme O.
        • Bridal S.L.
        VEGFR2-targeted contrast-enhanced ultrasound to distinguish between two anti-angiogenic treatments.
        Ultrasound Med Biol. 2015; 41: 2202-2211
        • Pugh C.W.
        • Ratcliffe P.J.
        Regulation of angiogenesis by hypoxia: Role of the HIF system.
        Nat Med. 2003; 9: 677-684
        • Semenza G.L.
        Targeting HIF-1 for cancer therapy.
        Nat Rev Cancer. 2003; 3: 721-732
        • Shweiki D.
        • Itin A.
        • Soffer D.
        • Keshet E.
        Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.
        Nature. 1992; 359: 843-845
        • Vakoc B.J.
        • Lanning R.M.
        • Tyrrell J.A.
        • Padera T.P.
        • Bartlett L.A.
        • Stylianopoulos T.
        • Munn L.L.
        • Tearney G.J.
        • Fukumura D.
        • Jain R.K.
        • Bouma B.E.
        Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging.
        Nat Med. 2009; 15: 1219-1223
        • Weis S.M.
        • Cheresh D.A.
        Tumor angiogenesis: Molecular pathways and therapeutic targets.
        Nat Med. 2011; 17: 1359-1370
        • Yao J.
        • Wang L.V.
        Photoacoustic brain imaging: From microscopic to macroscopic scales.
        Neurophotonics. 2014; 1011003
        • Yu J.L.
        • Rak J.W.
        • Carmeliet P.
        • Nagy A.
        • Kerbel R.S.
        • Coomber B.L.
        Heterogeneous vascular dependence of tumor cell populations.
        Am J Pathol. 2001; 158: 1325-1334