Advertisement
Review| Volume 44, ISSUE 12, P2441-2460, December 2018

Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review

  • Katherine W. Pulsipher
    Affiliations
    Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Search for articles by this author
  • Daniel A. Hammer
    Affiliations
    Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA

    Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Search for articles by this author
  • Daeyeon Lee
    Affiliations
    Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Search for articles by this author
  • Chandra M. Sehgal
    Correspondence
    Address correspondence to: Chandra M. Sehgal, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA19104, USA.
    Affiliations
    Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
    Search for articles by this author

      Abstract

      Microbubbles interact with ultrasound in various ways to enable their applications in ultrasound imaging and diagnosis. To generate high contrast and maximize therapeutic efficacy, microbubbles of high uniformity are required. Microfluidic technology, which enables precise control of small volumes of fluid at the sub-millimeter scale, has provided a versatile platform on which to produce highly uniform microbubbles for potential applications in ultrasound imaging and diagnosis. Here, we describe fundamental microfluidic principles and the most common types of microfluidic devices used to produce sub-10 μm microbubbles, appropriate for biomedical ultrasound. Bubbles can be engineered for specific applications by tailoring the bubble size, inner gas and shell composition and by functionalizing for additional imaging modalities, therapeutics or targeting ligands. To translate the laboratory-scale discoveries to widespread clinical use of these microfluidic-based microbubbles, increased bubble production is needed. We present various strategies recently developed to improve scale-up. We conclude this review by describing some outstanding problems in the field and presenting areas for future use of microfluidics in ultrasound.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abou-Saleh RH
        • Peyman SA
        • Critchley K
        • Evans SD
        • Thomson NH
        Nanomechanics of lipid encapsulated microbubbles with functional coatings.
        Langmuir. 2013; 29: 4096-4103
        • Abou-Saleh RH
        • Swain M
        • Evans SD
        • Thomson NH
        Poly(ethylene glycol) lipid-shelled microbubbles: Abundance, stability, and mechanical properties.
        Langmuir. 2014; 30: 5557-5563
        • Ahmad Z
        • Zhang H.
        • Farook U
        • Edirisinghe M
        • Stride E
        • Colombo P.
        Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow.
        J R Soc Interface. 2008; 5: 1255-1261
        • Amoozgar Z
        • Yeo Y
        Recent advances in stealth coating of nanoparticle drug delivery systems.
        Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012; 4: 219-233
        • Anderson CR
        • Hu X
        • Tlaxca J
        • Houghtaling R
        • Sharma K
        • Lawrence M
        • Ferrara K
        • Rychak JJ
        • Diego S
        Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent.
        Invest Radiol. 2011; 46: 215-224
        • Angilè FE
        • Vargo KB
        • Sehgal CM
        • Hammer DA
        • Lee D
        Recombinant protein-stabilized monodisperse microbubbles with tunable size using a valve-based microfluidic device.
        Langmuir. 2014; 30: 12610-12618
        • Anna SL
        Droplets and bubbles in microfluidic devices.
        Annu Rev Fluid Mech. 2016; 48: 285-309
        • Anna SL
        • Bontoux N
        • Stone HA
        Formation of dispersions using “flow focusing” in microchannels.
        Appl Phys Lett. 2003; 82: 364-366
        • Aron M
        • Browning R
        • Carugo D
        • Sezgin E
        • Bernardino de la Serna J
        • Eggeling C
        • Stride E
        Spectral imaging toolbox: Segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order.
        BMC Bioinformatics. 2017; 18: 1-8
        • Bae YH
        • Park K
        Targeted drug delivery to tumors: Myths, reality and possibility.
        J Control Release. 2011; 153: 198-205
        • Benam KH
        • Dauth S
        • Hassell B
        • Herland A
        • Jain A
        • Jang K
        • Karalis K
        • Kim HJ
        • Macqueen L
        • Mahmoodian R
        • Musah S
        • Torisawa Y
        • Van Der Meer AD
        • Villenave R
        • Yadid M
        • Parker KK
        • Ingber DE
        Engineered in vitro disease models.
        Annu Rev Pathol Mech Dis. 2015; 10: 195-262
        • Benchimol MJ
        • Hsu MJ
        • Schutt CE
        • Hall DJ
        • Mattrey RF
        • Esener SC
        Phospholipid/carbocyanine dye-shelled microbubbles as ultrasound-modulated fluorescent contrast agents.
        Soft Matter. 2013; 9: 2384
        • Bhagat AAS
        • Bow H
        • Hou HW
        • Tan SJ
        • Han J
        • Lim CT
        Microfluidics for cell separation.
        Med Biol Eng Comput. 2010; 48: 999-1014
        • Bhise NS
        • Ribas J
        • Manoharan V
        • Zhang YS
        • Polini A
        • Massa S
        • Dokmeci MR
        • Khademhosseini A
        Organ-on-a-chip platforms for studying drug delivery systems.
        J Control Release. 2014; 190: 82-93
        • Böhmer MR
        • Schroeders R
        • Steenbakkers JAM
        • de Winter SHPM
        • Duineveld PA
        • Lub J
        • Nijssen WPM
        • Pikkemaat JA
        • Stapert HR
        Preparation of monodisperse polymer particles and capsules by ink-jet printing.
        Colloids Surf A. 2006; 289: 96-104
        • Campo-Cortés F
        • Riboux G
        • Gordillo JM
        The effect of contact line pinning favors the mass production of monodisperse microbubbles.
        Microfluid Nanofluidics. 2016; 20: 21
        • Carugo D
        • Lee JY
        • Pora A
        • Browning RJ
        • Capretto L
        • Nastruzzi C
        • Stride E
        Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique.
        Biomed Microdevices. 2016; 18: 4
        • Castro-Hernández E
        • van Hoeve W
        • Lohse D
        • Gordillo JM
        Microbubble generation in a co-flow device operated in a new regime.
        Lab Chip. 2011; 11: 2023-2029
        • Chen C
        • Zhu Y
        • Leech PW
        • Manasseh R
        Production of monodispersed micron-sized bubbles at high rates in a microfluidic device.
        Appl Phys Lett. 2009; 95144101
        • Chin CD
        • Linder V
        • Sia SK
        Commercialization of microfluidic point-of-care diagnostic devices.
        Lab Chip. 2012; 12: 2118
        • Choi JJ
        • Feshitan JA
        • Baseri B
        • Wang S
        • Tung Y
        • Borden MA
        • Konofagou EE
        Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo.
        IEEE Trans Biomed Eng. 2010; 57: 145-154
        • Chomas JE
        • Dayton P
        • May D
        • Ferrara K
        Threshold of fragmentation for ultrasonic contrast agents.
        J Biomed Opt. 2001; 6: 141-150
        • Christopher GF
        • Anna SL
        Microfluidic methods for generating continuous droplet streams.
        J Phys D Appl Phys. 2007; 40: R319-R336
        • DeMaria AN
        • Narula J
        • Mahmud E
        • Tsimikas S
        Imaging vulnerable plaque by ultrasound.
        J Am Coll Cardiol. 2006; 47: 32-39
        • Dhanaliwala AH
        • Chen JL
        • Wang S
        • Hossack JA
        Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles.
        Microfluid Nanofluidics. 2013; 14: 457-467
        • Dhanaliwala AH
        • Dixon AJ
        • Lin D
        • Chen JL
        • Klibanov AL
        • Hossack JA
        In vivo imaging of microfluidic-produced microbubbles.
        Biomed Microdevices. 2015; 17: 23
        • Dixon AJ
        • Dhanaliwala AH
        • Chen JL
        • Hossack JA
        Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device.
        Ultrasound Med Biol. 2013; 39: 1267-1276
        • Dixon AJ
        • Rickel JMR
        • Shin BD
        • Klibanov AL
        • Hossack JA
        In vitro sonothrombolysis enhancement by transiently stable microbubbles produced by a flow-focusing microfluidic device.
        Ann Biomed Eng. 2018; 46: 222-232
        • Duncanson WJ
        • Lin T
        • Abate AR
        • Seiffert S
        • Shah RK
        • Weitz DA
        Microfluidic synthesis of advanced microparticles for encapsulation and controlled release.
        Lab Chip. 2012; 12: 2135
        • Elias DR
        • Poloukhtine A
        • Popik V
        • Tsourkas A
        Effect of ligand density, receptor density, and nanoparticle size on cell targeting.
        Nanomedicine. 2014; 9: 194-201
        • Evans E
        • Needham D
        Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions.
        J Phys Chem. 1987; 91: 4219-4228
        • Farook U
        • Stride E
        • Edirisinghe MJ
        • Moaleji R
        Microbubbling by co-axial electrohydrodynamic atomization.
        Med Biol Eng Comput. 2007; 45: 781-789
        • Farook U
        • Stride E
        • Edirisinghe MJ
        Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization.
        J R Soc Interface. 2009; 6: 271-277
        • Feshitan JA
        • Chen CC
        • Kwan JJ
        • Borden MA
        Microbubble size isolation by differential centrifugation.
        J Colloid Interface Sci. 2009; 329: 316-324
        • Gañán-Calvo AM
        • Gordillo JM
        Perfectly monodisperse microbubbling by capillary flow focusing.
        Phys Rev Lett. 2001; 87274501
        • German SR
        • Edwards MA
        • Chen Q
        • White HS
        Laplace pressure of individual H2 nanobubbles from pressure—Addition electrochemistry.
        Nano Lett. 2016; 16: 6691-6694
        • Gnyawali V
        • Moon B-U
        • Kieda J
        • Karshafian R
        • Kolios MC
        • Tsai SSH
        Honey, I shrunk the bubbles: Microfluidic vacuum shrinkage of lipid-stabilized microbubbles.
        Soft Matter. 2017; 13: 4011-4016
        • Guo MT
        • Rotem A
        • Heyman JA
        • Weitz DA
        Droplet microfluidics for high-throughput biological assays.
        Lab Chip. 2012; 12: 2146
        • Hettiarachchi K
        • Talu E
        • Longo ML
        • Dayton PA
        • Lee AP
        On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
        Lab Chip. 2007; 7: 463-468
        • Hettiarachchi K
        • Lee AP
        • Zhang S
        • Feingold S
        • Dayton PA
        Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy.
        Biotchnol Prog. 2009; 25: 938-945
        • Hoff L
        • Sontum PC
        • Hovem JM
        Oscillations of polymeric microbubbles: Effect of the encapsulating shell.
        J Acoust Soc Am. 2000; 107: 2272-2280
        • Hosny NA
        • Mohamedi G
        • Rademeyer P
        • Owen J
        • Wu Y
        • Tang MX
        • Eckersley RJ
        • Stride E
        • Kuimova MK
        Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors.
        Proc Natl Acad Sci. 2013; 110: 9225-9230
        • Hou X
        • Zhang YS
        • Santiago GTDe
        • Alvarez MM
        • Ribas J
        • Jonas SJ
        • Weiss PS
        • Andrews AM
        • Aizenberg J
        • Khademhosseini A
        Interplay between materials and microfluidics.
        Nat Rev Mater. 2017; 2: 17016
        • Hughes MS
        • Marsh JN
        • Hall CS
        • Fuhrhop RW
        • Lacy EK
        • Lanza GM
        • Wickline SA
        Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging.
        J Acoust Soc Am. 2005; 117: 964-972
        • Hunt SJ
        • Gade T
        • Soulen MC
        • Pickup S
        • Sehgal CM
        Antivascular ultrasound therapy.
        J Ultrasound Med. 2015; 34: 275-287
        • James ML
        • Gambhir SS
        A molecular imaging primer: Modalities, imaging agents, and applications.
        Physiol Rev. 2012; 92: 897-965
        • Jang WS
        • Park SC
        • Kim M
        • Doh J
        • Lee D
        • Hammer DA
        The effect of stabilizer on the mechanical response of double-emulsion-templated polymersomes.
        Macromol Rapid Commun. 2015; 36: 378-384
        • Jang Y
        • Jang WS
        • Gao C
        • Shim TS
        • Crocker JC
        • Hammer DA
        • Lee D
        Tuning the mechanical properties of recombinant protein-stabilized gas bubbles using triblock copolymers.
        ACS Macro Lett. 2016; 5: 371-376
        • Jeong HH
        • Issadore D
        • Lee D
        Recent developments in scale-up of microfluidic emulsion generation via parallelization.
        Korean J Chem Eng. 2016; 33: 1757-1766
        • Jeong HH
        • Yadavali S
        • Issadore D
        • Lee D
        Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
        Lab Chip. 2017; 17: 2667-2673
        • Joensson HN
        • Andersson Svahn H
        Droplet microfluidics—A tool for single-cell analysis.
        Angew Chem Int Ed. 2012; 51: 12176-12192
        • Joscelyne SM
        • Trägårdh G
        Membrane emulsification—A literature review.
        J Memb Sci. 2000; 169: 107-117
        • Kaigala GV
        • Ho S
        • Penterman R
        • Backhouse CJ
        Rapid prototyping of microfluidic devices with a wax printer.
        Lab Chip. 2007; 7: 384-387
        • Kamaly N
        • Xiao Z
        • Valencia PM
        • Radovic-Moreno AF
        • Farokhzad OC
        Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.
        Chem Soc Rev. 2012; 41: 2971-3010
        • Kamat NP
        • Lee MH
        • Lee D
        • Hammer DA
        Micropipette aspiration of double emulsion-templated polymersomes.
        Soft Matter. 2011; 7: 9863
        • Kaminski TS
        • Garstecki P
        Controlled droplet microfluidic systems for multistep chemical and biological assays.
        Chem Soc Rev. 2017; 46: 6210-6226
        • Kandadai MA
        • Mukherjee P
        • Shekhar H
        • Shaw GJ
        • Papautsky I
        • Holland CK
        Microfluidic manufacture of rt-PA-loaded echogenic liposomes.
        Biomed Microdevices. 2016; 18: 48
        • Kaya M
        • Feingold S
        • Hettiarachchi K
        • Lee AP
        • Dayton PA
        Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing.
        Bubble Sci Eng Technol. 2010; 2: 33-40
        • Ke H
        • Xing Z
        • Zhao B
        • Wang J
        • Liu J
        • Guo C
        • Yue X
        • Liu S
        • Tang Z
        • Dai Z
        Quantum-dot-modified microbubbles with bi-mode imaging capabilities.
        Nanotechnology. 2009; 20425105
        • Kendall MR
        • Bardin D
        • Shih R
        • Dayton PA
        • Lee AP
        Scaled-up production of monodisperse, dual layer microbubbles using multiarray microfluidic module for medical imaging and drug delivery.
        Bubble Sci Eng Technol. 2012; 4: 12-20
        • Kiessling F
        • Huppert J
        • Palmowski M
        Functional and molecular ultrasound imaging: concepts and contrast agents.
        Curr Med Chem. 2009; 16: 627-642
        • Kim DH
        • Costello MJ
        • Duncan PB
        • Needham D
        Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells: Novel solid microparticles.
        Langmuir. 2003; 19: 8455-8466
        • Klibanov AL.
        Targeted microbubbles: Ultrasound contrast agents for molecular imaging.
        in: Bulte JWM Modo MMJ Nanoparticles in biomedical imaging. Springer New York, New York2008: 327-341
        • Klibanov AL.
        Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging.
        Med Biol Eng Comput. 2009; 47: 875-882
        • Kukizaki M
        • Baba Y
        Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes.
        Colloids Surf A. 2008; 326: 129-137
        • Kukizaki M
        • Wada T
        Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes.
        Colloids Surf A. 2008; 317: 146-154
        • Kwapiszewska K
        • Żukowski K
        • Kwapiszewski R
        • Brzózka Z
        Double casting prototyping with a thermal aging step for fabrication of 3-D microstructures in poly(dimethylsiloxane).
        AIMS Biophys. 2016; 3: 553-562
        • Lee M
        • Lee EY
        • Lee D
        • Park BJ
        Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials.
        Soft Matter. 2015; 11: 2067-2079
        • Lee H
        • Kim H
        • Han H
        • Lee M
        • Lee S
        • Yoo H
        • Chang JH
        • Kim H
        Microbubbles used for contrast enhanced ultrasound and theragnosis: A review of principles to applications.
        Biomed Eng Lett. 2017; 7: 59-69
        • Lentacker I
        • De Smedt SC
        • Sanders NN
        Drug loaded microbubble design for ultrasound triggered delivery.
        Soft Matter. 2009; 5: 2161
        • Levenback BJ
        • Sehgal CM
        • Wood AKW
        Modeling of thermal effects in antivascular ultrasound therapy.
        J Acoust Soc Am. 2012; 131: 540
        • Li Z
        • Hou L
        • Zhang W
        • Zhu L
        Preparation of PDMS microfluidic devices based on drop-on-demand generation of wax molds.
        Anal Methods. 2014; 6: 4716-4722
        • Lignos I
        • Maceiczyk R
        • DeMello AJ
        Microfluidic technology: Uncovering the mechanisms of nanocrystal nucleation and growth.
        Acc Chem Res. 2017; 50: 1248-1257
        • Liu Y
        • Jiang X
        Why microfluidics? Merits and trends in chemical synthesis.
        Lab Chip. 2017; 17: 3960-3978
        • Liu Z
        • Wang F
        • Chen X
        Integrin αvβ3-targeted cancer therapy.
        Drug Dev Res. 2008; 69: 329-339
        • Liu HL
        • Fan CH
        • Ting CY
        • Yeh CK
        Combining microbubbles and ultrasound for drug delivery to brain tumors: Current progress and overview.
        Theranostics. 2014; 4: 432-444
        • Marre S
        • Jensen KF
        Synthesis of micro and nanostructures in microfluidic systems.
        Chem Soc Rev. 2010; 39: 1183
        • Pancholi K
        • Stride E
        • Edirisinghe M
        Generation of microbubbles for diagnostic and therapeutic applications using a novel device.
        J Drug Target. 2008; 16: 494-501
        • Pancholi KP
        • Farook U
        • Moaleji R
        • Stride E
        • Edirisinghe MJ
        Novel methods for preparing phospholipid coated microbubbles.
        Eur Biophys J. 2008; 37: 515-520
        • Park JI
        • Nie Z
        • Kumachev A
        • Abdelrahman AI
        • Binks BP
        • Stone HA
        • Kumacheva E
        A microfluidic approach to chemically driven assembly of colloidal particles at gas–liquid interfaces.
        Angew Chem Int Ed. 2009; 48: 5300-5304
        • Park JI
        • Jagadeesan D
        • Williams R
        • Oakden W
        • Chung S
        • Stanisz GJ
        • Kumacheva E
        Microbubbles loaded with nanoparticles: A route to multiple imaging modalities.
        ACS Nano. 2010; 4: 6579-6586
        • Park JI
        • Tumarkin E
        • Kumacheva E
        Small, stable, and monodispersed bubbles encapsulated with biopolymers.
        Macromol Rapid Commun. 2010; 31: 222-227
        • Park YC
        • Zhang C
        • Kim S
        • Mohamedi G
        • Beigie C
        • Nagy JO
        • Holt RG
        • Cleveland RO
        • Jeon NL
        • Wong JY
        Microvessels-on-a-chip to assess targeted ultrasound-assisted drug delivery.
        ACS Appl Mater Interfaces. 2016; 8: 31541-31549
        • Parrales MA
        • Fernandez JM
        • Perez-saborid M
        • Kopechek JA
        • Porter TM
        Acoustic characterization of monodisperse lipid-coated microbubbles: Relationship between size and shell viscoelastic properties.
        J Acoust Soc Am. 2014; 136: 1077-1084
        • Peyman SA
        • Abou-Saleh RH
        • Mclaughlan JR
        • Ingram N
        • Johnson BRG
        • Critchley K
        • Freear S
        • Evans JA
        • Markham AF
        • Louise P
        • Evans SD
        Expanding 3-D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
        Lab Chip. 2012; 12: 4544-4552
        • Peyman SA
        • McLaughlan JR
        • Abou-Saleh RH
        • Marston G
        • Johnson BRG
        • Freear S
        • Coletta PL
        • Markham AF
        • Evans SD
        On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.
        Lab Chip. 2016; 16: 679-687
        • Qin S
        • Ferrara KW
        Acoustic response of compliable microvessels containing ultrasound contrast agents.
        Phys Med Biol. 2006; 51: 5065-5088
        • Qin S
        • Caskey C
        • Ferrara K
        Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering.
        Phys Med Biol. 2009; 54: 1-42
        • Rawicz W
        • Olbrich KC
        • McIntosh T
        • Needham D
        • Evans EA
        Effect of chain length and unsaturation on elasticity of lipid bilayers.
        Biophys J. 2000; 79: 328-339
        • Sackmann EK
        • Fulton AL
        • Beebe DJ
        The present and future role of microfluidics in biomedical research.
        Nature. 2014; 507: 181-189
        • Sakhrani NM
        • Padh H
        Organelle targeting: Third level of drug targeting.
        Drug Des Devel Ther. 2013; 7: 585-599
        • Segers T
        • Versluis M
        Acoustic bubble sorting for ultrasound contrast agent enrichment.
        Lab Chip. 2014; 14: 1705-1714
        • Segers T
        • de Jong N
        • Versluis M
        Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments.
        J Acoust Soc Am. 2016; 140: 2506-2517
        • Segers T
        • De Rond L
        • De Jong N
        • Borden M
        • Versluis M
        Stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at high production rates.
        Langmuir. 2016; 32: 3937-3944
        • Segers T
        • Lohse D
        • Versluis M
        • Frinking P
        Universal equations for the coalescence probability and long-term size stability of phospholipid-coated monodisperse microbubbles formed by flow-focusing.
        Langmuir. 2017; 33: 10329-10339
        • Seo M
        • Gorelikov I
        • Williams R
        • Matsuura N
        Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
        Langmuir. 2010; 26: 13855-13860
        • Sheeran PS
        • Dayton PA
        Phase-change contrast agents for imaging and therapy.
        Curr Pharm Des. 2012; 18: 2152-2165
        • Shibuya M.
        Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies.
        Genes Cancer. 2011; 2: 1097-1105
        • Shih R
        • Bardin D
        • Martz TD
        • Sheeran PS
        • Dayton PA
        • Lee AP
        Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications.
        Lab Chip. 2013; 13: 4816-4826
        • Shung KK
        High frequency ultrasonic imaging.
        J Med Ultrasound. 2010; 17: 25-30
        • Shung KK.
        Diagnostic ultrasound: Past, present, and future.
        J Med Biol Eng. 2011; 31: 371-374
        • Sirsi SR
        • Borden MA
        Advances in ultrasound mediated gene therapy using microbubble contrast agents.
        Theranostics. 2012; 2: 1208-1222
        • Stride E
        • Edirisinghe M
        Novel microbubble preparation technologies.
        Soft Matter. 2008; 4: 2350
        • Talu E
        • Lozano MM
        • Powell RL
        • Dayton PA
        • Longo ML
        Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device.
        Langmuir. 2006; 22: 9487-9490
        • Talu E
        • Hettiarachchi K
        • Zhao S
        • Powell RL
        • Lee AP
        • Longo ML
        • Dayton PA
        Tailoring the size distribution of ultrasound contrast agents: Possible method for improving sensitivity in molecular imaging.
        Mol Imaging. 2007; 6: 384-392
        • Talu E
        • Hettiarachchi K
        • Powell RL
        • Lee AP
        • Dayton PA
        • Longo ML
        Maintaining monodispersity in a microbubble population formed by flow-focusing.
        Langmuir. 2008; 24: 1745-1749
        • Tang S
        • Whitesides G
        Basic microfluidic and soft lithographic techniques.
        in: Fainman Y Lee LP Psaltis D Yang C Optofluidics: Fundamentals, devices and applications. McGraw-Hill, New York2010: 7-32
        • Thorsen T
        • Roberts RW
        • Arnold FH
        • Quake SR
        Dynamic pattern formation in a vesicle-generating microfluidic device.
        Phys Rev Lett. 2001; 86: 4163-4166
        • Tsutsui JM
        • Xie F
        • Porter RT
        The use of microbubbles to target drug delivery.
        Cardiovasc Ultrasound. 2004; 2: 23
        • Utada AS
        • Fernandez-Nieves A
        • Stone HA
        • Weitz DA
        Dripping to jetting transitions in coflowing liquid streams.
        Phys Rev Lett. 2007; 99: 1-4
        • van der Meer SM
        • Dollet B
        • Voormolen MM
        • Chin CT
        • Bouakaz A
        • de Jong N
        • Versluis M
        • Lohse D
        Microbubble spectroscopy of ultrasound contrast agents.
        J Acoust Soc Am. 2007; 121: 648-656
        • van Wamel A
        • Kooiman K
        • Harteveld M
        • Emmer M
        • ten Cate FJ
        • Versluis M
        • de Jong N
        Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation.
        J Control Release. 2006; 112: 149-155
        • Vladisavljevi GT
        • Khalid N
        • Neves MA
        • Kuroiwa T
        • Nakajima M
        • Uemura K
        • Ichikawa S
        • Kobayashi I
        • Andersson-svahn H
        Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery.
        Adv Drug Deliv Rev. 2013; 65: 1626-1663
        • Whitesides GM
        The origins and the future of microfluidics.
        Nature. 2006; 442: 368-373
        • Wiedemair W
        • Tukovic Z
        • Jasak H
        • Poulikakos D
        • Kurtcuoglu V
        On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood–brain barrier.
        Phys Med Biol. 2012; 57: 1019-1045
        • Wood AKW
        • Sehgal CM
        A review of low-intensity ultrasound for cancer therapy.
        Ultrasound Med Biol. 2015; 41: 905-928
        • Wu SK
        • Chu PC
        • Chai WY
        • Kang ST
        • Tsai CH
        • Fan CH
        • Yeh CK
        • Liu HL
        Characterization of different microbubbles in assisting focused ultrasound-induced blood–brain barrier opening.
        Sci Rep. 2017; 7: 46689
        • Xia YN
        • Whitesides GM
        Soft lithography.
        Annu Rev Mater Sci. 1998; 37: 551-575
        • Yan WC
        • Chua QW
        • Ong XJ
        • Sharma VK
        • Tong YW
        • Wang CH
        Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA.
        J Colloid Interface Sci. 2017; 501: 282-293
        • Yeh JSM
        • Sennoga CA
        • McConnell E
        • Eckersley R
        • Tang MX
        • Nourshargh S
        • Seddon JM
        • Haskard DO
        • Nihoyannopoulos P
        A targeting microbubble for ultrasound molecular imaging.
        PLoS One. 2015; 10: 1-23
        • Yin H
        • Marshall D
        Microfluidics for single cell analysis.
        Curr Opin Biotechnol. 2012; 23: 110-119
        • Yin T
        • Wang P
        • Zheng R
        • Zheng B
        • Cheng D
        • Zhang X
        • Shuai X
        Nanobubbles for enhanced ultrasound imaging of tumors.
        Int J Nanomed. 2012; 7: 895-904
        • Yin T
        • Wang P
        • Li J
        • Zheng R
        • Zheng B
        • Cheng D
        • Li R
        • Lai J
        • Shuai X
        Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas.
        Biomaterials. 2013; 34: 4532-4543
        • Zhao CX
        Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
        Adv Drug Deliv Rev. 2013; 65: 1420-1446