Advertisement
Original Contribution| Volume 43, ISSUE 9, P1780-1796, September 2017

Revisiting the Cramér Rao Lower Bound for Elastography: Predicting the Performance of Axial, Lateral and Polar Strain Elastograms

  • Prashant Verma
    Affiliations
    Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
    Search for articles by this author
  • Marvin M. Doyley
    Correspondence
    Address correspondence to: Marvin M. Doyley, Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA.
    Affiliations
    Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York, USA
    Search for articles by this author

      Abstract

      We derived the Cramér Rao lower bound for 2-D estimators employed in quasi-static elastography. To illustrate the theory, we modeled the 2-D point spread function as a sinc-modulated sine pulse in the axial direction and as a sinc function in the lateral direction. We compared theoretical predictions of the variance incurred in displacements and strains when quasi-static elastography was performed under varying conditions (different scanning methods, different configuration of conventional linear array imaging and different-size kernels) with those measured from simulated or experimentally acquired data. We performed studies to illustrate the application of the derived expressions when performing vascular elastography with plane wave and compounded plane wave imaging. Standard deviations in lateral displacements were an order higher than those in axial. Additionally, the derived expressions predicted that peak performance should occur when 2% strain is applied, the same order of magnitude as observed in simulations (1%) and experiments (1%–2%). We assessed how different configurations of conventional linear array imaging (number of active reception and transmission elements) influenced the quality of axial and lateral strain elastograms. The theoretical expressions predicted that 2-D echo tracking should be performed with wide kernels, but the length of the kernels should be selected using knowledge of the magnitude of the applied strain: specifically, longer kernels for small strains (<5%) and shorter kernels for larger strains. Although the general trends of theoretical predictions and experimental observations were similar, biases incurred during beamforming and subsample displacement estimation produced noticeable differences.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bertrand M.
        • Meunier J.
        • Doucet M.
        • Ferland G.
        Ultrasonic biomechanical strain gauge based on speckle tracking.
        Proc IEEE Int Ultrason Symp. 1989; 2: 859-863
        • Bilgen M.
        • Insana M.F.
        Deformation models and correlation analysis in elastography.
        J Acoust Soc Am. 1996; 99: 3212-3224
        • Bilgen M.
        • Insana M.F.
        Error analysis in acoustic elastography: II. Strain estimation and SNR analysis.
        J Acoust Soc Am. 1997; 101: 1147-1154
        • Carter G.C.
        Coherence and time delay estimation.
        Proc IEEE. 1987; 75: 236-255
        • Céspedes I.
        • Ophir J.
        • Ponnekanti H.
        • Maklad N.
        Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo.
        Ultrason Imaging. 1993; 15: 73-88
        • Céspedes I.
        • Huang Y.
        • Ophir J.
        • Spratt S.
        Methods for estimation of subsample time delays of digitized echo signals.
        Ultrason Imaging. 1995; 17: 142-171
        • Cespedes I.
        • Insana M.
        • Ophir J.
        Theoretical bounds on strain estimation in elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1995; 42: 969-972
        • Cook T.
        • Zhu Y.
        • Hall T.J.
        A comparison of one-dimensional and two-dimensional kernels for tracking two-dimensional motion in ultrasound echo dat.
        Ultrasound Med Biol. 2004; 29: 759-772
        • Doyley M.M.
        • Bamber J.C.
        • Fuechsel F.
        • Bush N.L.
        A freehand elastographic imaging approach for clinical breast imaging: System development and performance evaluation.
        Ultrasound Med Biol. 2001; 27: 1347-1357
        • Ekroll I.K.
        • Swillens A.
        • Segers P.
        • Dahl T.
        • Torp H.
        • Lovstakken L.
        Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2013; 60: 727-738
        • Hansen H.H.
        • Lopata R.G.
        • Idzenga T.
        • de Korte C.L.
        An angular compounding technique using displacement projection for noninvasive ultrasound strain imaging of vessel cross-sections.
        Ultrasound Med Biol. 2010; 36: 1947-1956
        • Idzenga T.
        • Gaburov E.
        • Vermin W.
        • Menssen J.
        • Korte C.L.D.
        Fast 2-D ultrasound strain imaging: The benefits of using a GPU.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2014; 61: 207-213
        • Jensen J.A.
        • Svendsen N.B.
        Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1992; 39: 262-267
        • Kallel F.
        • Ophir J.
        Three-dimensional tissue motion and its effect on image noise in elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1997; 44: 1286-1296
        • Konofagou E.E.
        • Varghese T.
        • Ophir J.
        Theoretical bounds on the estimation of transverse displacement, transverse strain and poisson's ratio in elastography.
        Ultrason Imaging. 2000; 22: 153-177
        • Korukonda S.
        • Doyley M.M.
        Estimating axial and lateral strain using a synthetic aperture elastographic imaging system.
        Ultrasound Med Biol. 2011; 37: 1893-1908
        • Korukonda S.
        • Doyley M.M.
        Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2012; 59: 1639-1653
        • Korukonda S.
        • Nayak R.
        • Carson N.
        • Schifitto G.
        • Dogra V.
        • Doyley M.M.
        Noninvasive vascular elastography using plane-wave and sparse-array imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2013; 60: 332-342
        • Maurice R.L.
        • Ohayon J.
        • Fretigny Y.
        • Bertrand M.
        • Soulez G.
        • Cloutier G.
        Noninvasive vascular elastography: Theoretical framework.
        IEEE Trans Med Imaging. 2004; 23: 164-180
        • Montaldo G.
        • Tanter M.
        • Bercoff J.
        • Benech N.
        • Fink M.
        Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 489-506
        • Nayak R.
        • Huntzicker S.
        • Ohayon J.
        • Carson N.
        • Dogra V.
        • Schifitto G.
        • Doyley M.M.
        Principal strain vascular elastography: Simulation and preliminary clinical evaluation.
        Ultrasound Med Biol. 2017; 43: 682-699
        • O'Donnell M.
        • Skovorada A.R.
        • Shapo B.M.
        Measurement of arterial wall motion using Fourier based speckle tracking algorithms.
        Proc IEEE Ultrason Symp. 1991; 2: 1101-1104
        • Ophir J.
        • Céspedes I.
        • Ponnekanti H.
        • Yazdi Y.
        • Li X.
        Elastography: A quantitative method for imaging the elasticity of biological tissues.
        Ultrason Imaging. 1991; 13: 111-134
        • Poree J.
        • Garcia D.
        • Chayer B.
        • Ohayon J.
        • Cloutier G.
        Noninvasive vascular elastography with plane strain incompressibility assumption using ultrafast coherent compound plane wave imaging.
        IEEE Trans Med Imaging. 2015; 34: 2618-2631
        • Rao M.
        • Varghese T.
        Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
        J Acoust Soc Am. 2008; 124: 1858-1865
        • Ribbers H.
        • Lopata R.G.
        • Holewijn S.
        • Pasterkamp G.
        • Blankensteijn J.D.
        • de Korte C.L.
        Noninvasive two-dimensional strain imaging of arteries: Validation in phantoms and preliminary experience in carotid arteries in vivo.
        Ultrasound Med Biol. 2007; 33: 530-540
        • Richards M.S.
        • Doyley M.M.
        Investigating the impact of spatial priors on the performance of model-based IVUS elastography.
        Phys Med Biol. 2011; 56: 7223
        • Schmitt C.
        • Soulez G.
        • Maurice R.L.
        • Giroux M.F.
        • Cloutier G.
        Noninvasive vascular elastography: Toward a complementary characterization tool of atherosclerosis in carotid arteries.
        Ultrasound Med Biol. 2007; 33: 1841-1858
        • So H.
        • Chen J.
        • Yiu B.
        • Yu A.
        Medical ultrasound imaging: To GPU or not to GPU?.
        IEEE Micro. 2011; 31: 54-65
        • Talhami H.
        • Wilson L.
        • Neale M.
        Spectral tissue strain: A new technique for imaging tissue strain using intravascular ultrasound.
        Ultrasound Med Biol. 1994; 20: 759-772
        • Udesen J.
        • Gran F.
        • Hansen K.L.
        • Jensen J.A.
        • Thomsen C.
        • Nielsen M.B.
        High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1729-1743
        • Varghese T.
        • Ophir J.
        Enhancement of echo-signal correlation in elastography using temporal stretching.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1997; 44: 173-180
        • Varghese T.
        • Ophir J.
        Characterization of elastographic noise using the envelope of echo signals.
        Ultrasound Med Biol. 1998; 24: 543-555
        • Verma P.
        • Doyley M.M.
        Synthetic aperture elastography: A GPU based approach.
        in: Bosch J.G. Doyley M.M. Medical imaging 2014: Ultrasonic imaging and tomography. SPIE Proc, 2014: 9040 (Available at: http://dx.doi.org/10.1117/12.2046374)
        • Wagner R.F.
        • Smith S.W.
        • Sandrik J.M.
        • Lopez H.
        Statistics of speckle in ultrasound B-scans.
        IEEE Trans Sonics Ultrason. 1983; 30: 156-163
        • Walker W.F.
        • Trahey G.E.
        A fundamental limit on delay estimation using partially correlated speckle signals.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1995; 42: 301-308