Advertisement

Sonoelastomics for Breast Tumor Classification: A Radiomics Approach with Clustering-Based Feature Selection on Sonoelastography

      Abstract

      A radiomics approach to sonoelastography, called “sonoelastomics,” is proposed for classification of benign and malignant breast tumors. From sonoelastograms of breast tumors, a high-throughput 364-dimensional feature set was calculated consisting of shape features, intensity statistics, gray-level co-occurrence matrix texture features and contourlet texture features, which quantified the shape, hardness and hardness heterogeneity of a tumor. The high-throughput features were then selected for feature reduction using hierarchical clustering and three-feature selection metrics. For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, an accuracy of 88.0%, a sensitivity of 85.7% and a specificity of 89.3% in a validation set via the leave-one-out cross-validation, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features. The sonoelastomic features are valuable in breast tumor differentiation.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aerts H.J.W.L.
        • Velazquez E.R.
        • Leijenaar R.T.H.
        • Parmar C.
        • Grossmann P.
        • Cavalho S.
        • Bussink J.
        • Monshouwer R.
        • Haibe-Kains B.
        • Rietveld D.
        • Hoebers F.
        • Rietbergen M.M.
        • Leemans C.R.
        • Dekker A.
        • Quackenbush J.
        • Gillies R.J.
        • Lambin P.
        Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
        Nat Commun. 2014; 5: 4006
        • Alhabshi S.M.I.
        • Rahmat K.
        • Halim N.A.
        • Aziz S.
        • Radhika S.
        • Gan G.C.
        • Vijayananthan A.
        • Westerhout C.J.
        • Mohd-Shah M.N.
        • Jaszle S.
        Semi-quantitative and qualitative assessment of breast ultrasound elastography in differentiating between malignant and benign lesions.
        Ultrasound Med Biol. 2013; 39: 568-578
        • Asselin M.C.
        • O'Connor J.P.B.
        • Boellaard R.
        • Thacker N.A.
        • Jackson A.
        Quantifying heterogeneity in human tumours using MRI and PET.
        Eur J Cancer. 2012; 48: 447-455
        • Bar-Joseph Z.
        • Gifford D.K.
        • Jaakkola T.S.
        Fast optimal leaf ordering for hierarchical clustering.
        Bioinformatics. 2001; 17: S22-S29
        • Barr R.G.
        • Nakashima K.
        • Amy D.
        • Cosgrove D.
        • Farrokh A.
        • Schafer F.
        • Bamber J.C.
        • Castera L.
        • Choi B.I.
        • Chou Y.H.
        • Dietrich C.F.
        • Ding H.
        • Ferraioli G.
        • Filice C.
        • Friedrich-Rust M.
        • Hall T.J.
        • Nightingale K.R.
        • Palmeri M.L.
        • Shiina T.
        • Suzuki S.
        • Sporea I.
        • Wilson S.
        • Kudo M.
        WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2. Breast.
        Ultrasound Med Biol. 2015; 41: 1148-1160
        • Bercoff J.
        • Tanter M.
        • Fink M.
        Supersonic shear imaging: A new technique for soft tissue elasticity mapping.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 396-409
        • Chaddad A.
        • Zinn P.O.
        • Colen R.R.
        Radiomics texture feature extraction for characterizing GBM phenotypes using GLCM.
        Proc IEEE Int Symp Biomed Imaging. 2015; : 84-87
        • Cho N.
        • Moon W.K.
        • Kim H.Y.
        • Chang J.M.
        • Park S.H.
        • Lyou C.Y.
        Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses.
        J Ultrasound Med. 2010; 29: 1-7
        • Do M.N.
        • Vetterli M.
        The contourlet transform: An efficient directional multiresolution image representation.
        IEEE Trans Image Process. 2005; 14: 2091-2106
        • Fausto A.
        • Rubello D.
        • Carboni A.
        • Mastellari P.
        • Chondrogiannis S.
        • Volterrani L.
        Clinical value of relative quantification ultrasound elastography in characterizing breast tumors.
        Biomed Pharmacother. 2015; 75: 88-92
        • Gillies R.J.
        • Kinahan P.E.
        • Hricak H.
        Radiomics: Images are more than pictures, they are data.
        Radiology. 2015; 278: 563-577
        • Golub T.R.
        • Slonim D.K.
        • Tamayo P.
        • Huard C.
        • Gaasenbeek M.
        • Mesirov J.P.
        • Coller H.
        • Loh M.L.
        • Downing J.R.
        • Caligiuri M.A.
        • Bloomfield C.D.
        • Lander E.S.
        Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring.
        Science. 1999; 286: 531-537
        • Hao S.-Y.
        • Jiang Q.-C.
        • Zhong W.-J.
        • Zhao X.-B.
        • Yao J.-Y.
        • Li L.-J.
        • Luo B.-M.
        • Ou B.
        • Zhi H.
        Ultrasound elastography combined with BI-RADS–US classification system: Is it helpful for the diagnostic performance of conventional ultrasonography?.
        Clin Breast Cancer. 2016; 16: e33-e41
        • Haralick R.M.
        • Shanmugam K.
        Textural features for image classification.
        IEEE Trans Systems, Man Cybernet. 1973; SMC-3: 610-621
        • Hatt M.
        • Majdoub M.
        • Vallières M.
        • Tixier F.
        • Le Rest C.C.
        • Groheux D.
        • Hindié E.
        • Martineau A.
        • Pradier O.
        • Hustinx R.
        18F-FDG PET uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort.
        J Nucl Med. 2015; 56: 38-44
        • Huang Y.Q.
        • Liang C.H.
        • He L.
        • Tian J.
        • Liang C.S.
        • Chen X.
        • Ma Z.L.
        • Liu Z.Y.
        Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.
        J Clin Oncol. 2016; 34: 2157-2164
        • Itoh A.
        • Ueno E.
        • Tohno E.
        • Kamma H.
        • Takahashi H.
        • Shiina T.
        • Yamakawa M.
        • Matsumura T.
        Breast disease: Clinical application of US elastography for diagnosis.
        Radiology. 2006; 239: 341-350
        • Jamshidi N.
        • Jonasch E.
        • Zapala M.
        • Korn R.L.
        • Brooks J.D.
        • Ljungberg B.
        • Kuo M.D.
        The radiogenomic risk score stratifies outcomes in a renal cell cancer phase 2 clinical trial.
        Eur Radiol. 2016; 26: 2798-2807
        • Kadour M.
        • Noble J.A.
        Assisted-freehand ultrasound elasticity imaging.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 36-43
        • Kim S.Y.
        • Park J.S.
        • Koo H.R.
        Combined use of ultrasound elastography and B-mode sonography for differentiation of benign and malignant circumscribed breast masses.
        J Ultras Med. 2015; 34: 1951-1959
        • Kumar V.
        • Gu Y.
        • Basu S.
        • Berglund A.
        • Eschrich S.A.
        • Schabath M.B.
        • Forster K.
        • Aerts H.J.
        • Dekker A.
        • Fenstermacher D.
        • Goldgof D.B.
        • Hall L.O.
        • Lambin P.
        • Balagurunathan Y.
        • Gatenby R.A.
        • Gillies R.J.
        Radiomics: The process and the challenges.
        Magn Reson Imaging. 2012; 30: 1234-1248
        • Lambin P.
        • Rios-Velazquez E.
        • Leijenaar R.
        • Carvalho S.
        • van Stiphout R.G.
        • Granton P.
        • Zegers C.M.
        • Gillies R.
        • Boellard R.
        • Dekker A.
        • Aerts H.J.
        Radiomics: Extracting more information from medical images using advanced feature analysis.
        Eur J Cancer. 2012; 48: 441-446
      1. Livni R, Shalev-Shwartz S, Shamir O. An algorithm for training polynomial networks. arXiv preprint arXiv:1304.7045, 2013.

        • Moon W.K.
        • Choi J.W.
        • Cho N.
        • Park S.H.
        • Chang J.M.
        • Jang M.
        • Kim K.G.
        Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses.
        Am J Roentgenol. 2010; 195: 1460-1965
        • Nightingale K.
        • McAleavey S.
        • Trahey G.
        Shear-wave generation using acoustic radiation force: In vivo and ex vivo results.
        Ultrasound Med Biol. 2003; 29: 1715-1723
        • Ophir J.
        • Céspedes I.
        • Ponnekanti H.
        • Yazdi Y.
        • Li X.
        Elastography: A quantitative method for imaging the elasticity of biological tissues.
        Ultrasonic Imaging. 1991; 13: 111-134
        • Park C.S.
        • Kim S.H.
        • Jung N.Y.
        • Choi J.J.
        • Kang B.J.
        • Jung H.S.
        Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions.
        Breast Cancer. 2015; 22: 153-160
        • Platt J.
        Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
        Adv Large Margin Classifiers. 1999; 10: 61-74
        • Redling K.
        • Schwab F.
        • Siebert M.
        • Schötzau A.
        • Zanetti-Dällenbach R.
        Elastography Complements Ultrasound as Principle Modality in Breast Lesion Assessment.
        Gynecol Obstet Invest. 2016; https://doi.org/10.1159/000445746
        • Shiina T.
        • Nightingale K.R.
        • Palmeri M.L.
        • Hall T.J.
        • Bamber J.C.
        • Barr R.G.
        • Castera L.
        • Choi B.I.
        • Chou Y.H.
        • Cosgrove D.
        • Dietrich C.F.
        • Ding H.
        • Amy D.
        • Farrokh A.
        • Ferraioli G.
        • Filice C.
        • Friedrich-Rust M.
        • Nakashima K.
        • Schafer F.
        • Sporea I.
        • Suzuki S.
        • Wilson S.
        • Kudo M.
        Wfumb Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 1. Basic principles and terminology.
        Ultrasound Med Biol. 2015; 41: 1126-1147
        • Uniyal N.
        • Eskandari H.
        • Abolmaesumi P.
        • Sojoudi S.
        • Gordon P.
        • Warren L.
        • Rohling R.N.
        • Salcudean S.E.
        • Moradi M.
        Ultrasound RF time series for classification of breast lesions.
        IEEE Trans Med Imaging. 2015; 34: 652-661
        • Vallières M.
        • Freeman C.
        • Skamene S.
        • El Naqa I.
        A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities.
        Phys Med Biol. 2015; 60: 5471
        • Venkatesh S.S.
        • Levenback B.J.
        • Sultan L.R.
        • Bouzghar G.
        • Sehgal C.M.
        Going beyond a first reader: A machine learning methodology for optimizing cost and performance in breast ultrasound diagnosis.
        Ultrasound Med Biol. 2015; 41: 3148-3162
        • Yoon J.H.
        • Kim M.H.
        • Kim E.K.
        • Moon H.J.
        • Kwak J.Y.
        • Kim M.J.
        Interobserver variability of ultrasound elastography: How it affects the diagnosis of breast lesions.
        Am J Roentgenol. 2011; 196: 730-736
        • Zhang Q.
        • Cai Y.
        • Hua Y.
        • Shi J.
        • Wang Y.
        • Wang Y.
        Sonoelastography shows that Achilles tendons with insertional tendinopathy are harder than asymptomatic tendons.
        Knee Surg Sports Traumatol Arthrosc. 2016; https://doi.org/10.1007/s00167-016-4197-8
        • Zhang Q.
        • Li C.
        • Han H.
        • Yang L.
        • Wang Y.
        • Wang W.
        Computer-aided quantification of contrast agent spatial distribution within atherosclerotic plaque in contrast-enhanced ultrasound image sequences.
        Biomed Signal Process Control. 2014; 13: 50-61
        • Zhang Q.
        • Xiao Y.
        • Chen S.
        • Wang C.Z.
        • Zhengy H.R.
        Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification.
        Ultrasound Med Biol. 2015; 41: 588-600
        • Zhang Q.
        • Xiao Y.
        • Dai W.
        • Suo J.
        • Wang C.
        • Shi J.
        • Zheng H.
        Deep learning based classification of breast tumors with shear-wave elastography.
        Ultrasonics. 2016; 72: 150-157
        • Zhang X.
        • Xiao Y.
        • Zeng J.
        • Qiu W.
        • Qian M.
        • Wang C.
        • Zheng R.
        • Zheng H.
        Computer-assisted assessment of ultrasound real-time elastography: Initial experience in 145 breast lesions.
        Eur J Radiol. 2014; 83: e1-e7
        • Zhao Q.L.
        • Ruan L.T.
        • Zhang H.
        • Yin Y.M.
        • Duan S.X.
        Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method.
        Eur J Radiol. 2012; 81: 3245-3249
        • Zhi H.
        • Ou B.
        • Xiao X.Y.
        • Peng Y.L.
        • Wang Y.
        • Liu L.S.
        • Xiao Y.
        • Liu S.J.
        • Wu C.J.
        • Jiang Y.X.
        Ultrasound elastography of breast lesions in Chinese women: A multicenter study in China.
        Clin Breast Cancer. 2013; 13: 392-400
        • Zhou J.
        • Zhan W.
        • Dong Y.
        • Yang Z.
        • Zhou C.
        Stiffness of the surrounding tissue of breast lesions evaluated by ultrasound elastography.
        Eur Radiol. 2014; 24: 1659-1667

      CHORUS Manuscript

      View Open Manuscript