Advertisement

Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles

      Abstract

      Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25–2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acconcia C.
        • Leung B.Y.
        • Manjunath A.
        • Goertz D.E.
        Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.
        Ultrasound Med Biol. 2014; 40: 2134-2150
        • Allen J.S.
        • Roy R.A.
        • Church C.C.
        On the role of shear viscosity in mediating inertial cavitation from short-pulse, megahertz-frequency ultrasound.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1997; 44: 743-751
        • Apfel R.E.
        Possibility of microcavitation from diagnostic ultrasound.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1986; 33: 139-142
        • Birnbaum Y.
        • Luo H.
        • Nagai T.
        • Fishbein M.C.
        • Peterson T.M.
        • Li S.
        • Kricsfeld D.
        • Porter T.R.
        • Siegel R.J.
        Noninvasive in vivo clot dissolution without a thrombolytic drug: Recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles.
        Circulation. 1998; 97: 130-134
        • Bolten D.
        • Turk M.
        Experimental study on the surface tension, density, and viscosity of aqueous poly(vinylpyrrolidone) solutions.
        J Chem Eng Data. 2011; 56: 582-588
        • Borrelli M.J.
        • O'Brien W.D.
        • Hamilton E.
        • Oelze M.L.
        • Wu J.
        • Bernock L.J.
        • Tung S.
        • Rokadia H.
        • Culp W.C.
        Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy.
        J Vasc Interv Radiol. 2012; 23: 1677-1684
        • Bouakaz A.
        • Versluis M.
        • de Jong N.
        High-speed optical observations of contrast agent destruction.
        Ultrasound Med Biol. 2005; 31: 391-399
        • Brenner M.P.
        • Hilgenfeldt S.
        • Lohse D.
        Single-bubble sonoluminescence.
        Rev Mod Phys. 2002; 74: 425-484
        • Burgess A.
        • Hynynen K.
        Drug delivery across the blood–brain barrier using focused ultrasound.
        Expert Opin Drug Deliv. 2014; 11: 711-721
        • Carson A.R.
        • McTiernan C.F.
        • Lavery L.
        • Grata M.
        • Leng X.
        • Wang J.
        • Chen X.
        • Villanueva F.S.
        Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy.
        Cancer Res. 2012; 72: 6191-6199
        • Carson A.R.
        • McTiernan C.F.
        • Lavery L.
        • Hodnick A.
        • Grata M.
        • Leng X.
        • Wang J.
        • Chen X.
        • Modzelewski R.A.
        • Villanueva F.S.
        Gene therapy of carcinoma using ultrasound-targeted microbubble destruction.
        Ultrasound Med Biol. 2011; 37: 393-402
        • Chen X.
        • Wang J.
        • Versluis M.
        • de Jong N.
        • Villanueva F.S.
        Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects.
        Rev Sci Instrum. 2013; 84: 063701
        • Choi J.J.
        • Pernot M.
        • Small S.A.
        • Konofagou E.E.
        Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice.
        Ultrasound Med Biol. 2007; 33: 95-104
        • Chomas J.
        • Dayton P.
        • Morgan K.
        • Allen J.
        • Ferrara K.
        Optimization of microbubble destruction.
        IEEE Ultrason Symp Proc Int Symp. 1999; 2 (Catalog No.99 CH37027): 1689-1692
        • Chomas J.E.
        • Dayton P.
        • May D.
        • Ferrara K.
        Threshold of fragmentation for ultrasonic contrast agents.
        J Biomed Opt. 2001; 6: 141-150
        • Christiansen J.P.
        • French B.A.
        • Klibanov A.L.
        • Kaul S.
        • Lindner J.R.
        Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles.
        Ultrasound Med Biol. 2003; 29: 1759-1767
        • Culp W.C.
        • Flores R.
        • Brown A.T.
        • Lowery J.D.
        • Roberson P.K.
        • Hennings L.J.
        • Woods S.D.
        • Hatton J.H.
        • Culp B.C.
        • Skinner R.D.
        • Borrelli M.J.
        Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke.
        Stroke. 2011; 42: 2280-2285
        • Datta S.
        • Coussios C.-C.
        • Ammi A.Y.
        • Mast T.D.
        • de Courten-Myers G.M.
        • Holland C.K.
        Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.
        Ultrasound Med Biol. 2008; 34: 1421-1433
        • Deng C.
        • Apfel R.E.
        • Holland C.K.
        Inertial cavitation produced by pulsed ultrasound in controlled host media.
        J Acoust Soc Am. 1996; 10: 1199-1208
        • Dollet B.
        • van der Meer S.M.
        • Garbin V.
        • de Jong N.
        • Lohse D.
        • Versluis M.
        Nonspherical oscillations of ultrasound contrast agent microbubbles.
        Ultrasound Med Biol. 2008; 34: 1465-1473
        • Escoffre J.M.
        • Novell A.
        • Serrière S.
        • Lecomte T.
        • Bouakaz A.
        Irinotecan delivery by microbubble-assisted ultrasound: In vitro validation and a pilot preclinical study.
        Mol Pharm. 2013; 10: 2667-2675
        • Fan Z.
        • Chen D.
        • Deng C.X.
        Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.
        J Control Release. 2013; 170: 401-413
        • Flynn H.G.
        Cavitation dynamics: I. A mathematical formulation.
        J Acoust Soc Am. 1975; 57: 1379-1396
        • Flynn H.G.
        Cavitation dynamics: II. Free pulsations and models for cavitation bubbles.
        J Acoust Soc Am. 1975; 58: 1160-1170
        • Forbes M.M.
        • Steinberg R.L.
        • O'Brien W.D.
        Examination of inertial cavitation of Optison in producing sonoporation of Chinese hamster ovary cells.
        Ultrasound Med Biol. 2008; 34: 2009-2018
        • Garbin V.
        • Cojoc D.
        • Ferrari E.
        • Di Fabrizio E.
        • Overvelde M.L.J.
        • van der Meer S.M.
        • de Jong N.
        • Lohse D.
        • Versluis M.
        Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging.
        Appl Phys Lett. 2007; 90: 114103
        • Hallow D.M.
        • Mahajan A.D.
        • McCutchen T.E.
        • Prausnitz M.R.
        Measurement and correlation of acoustic cavitation with cellular bioeffects.
        Ultrasound Med Biol. 2006; 32: 1111-1122
        • Hao Y.
        • Prosperetti A.
        The effect of viscosity on the spherical stability of oscillating gas bubbles.
        Phys Fluids. 1999; 11: 1309-1317
        • Helfield B.L.
        • Cherin E.
        • Foster F.S.
        • Goertz D.E.
        Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: A comparative study of five agents.
        Ultrasound Med Biol. 2012; 38: 846-863
        • Helfield B.L.
        • Leung B.Y.
        • Goertz D.E.
        The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles.
        Phys Med Biol. 2014; 59: 1721-1745
        • Hilgenfeldt S.
        • Lohse D.
        • Brenner M.P.
        Phase diagrams for sonoluminescing bubbles.
        Phys Fluids. 1996; 8: 2808-2826
        • Kang J.
        • Wu X.
        • Wang Z.
        • Ran H.
        • Xu C.
        • Wu J.
        • Wang Z.
        • Zhang Y.
        Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors.
        J Ultrasound Med. 2010; 29: 61-70
        • Kinoshita M.
        • Hynynen K.
        A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound.
        Biochem Biophys Res Commun. 2005; 335: 393-399
        • Kooiman K.
        • Foppen-Harteveld M.
        • van der Steen A.F.
        • de Jong N.
        Sonoporation of endothelial cells by vibrating targeted microbubbles.
        J Control Release. 2011; 154: 35-41
        • Kotopoulis S.
        • Dimcevski G.
        • Gilja O.H.
        • Hoem D.
        • Postema M.
        Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study.
        Med Phys. 2013; 40: 072902
        • Leeman J.E.
        • Kim J.S.
        • Yu F.T.
        • Chen X.
        • Kim K.
        • Wang J.
        • Chen X.
        • Villanueva F.S.
        • Pacella J.J.
        Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis.
        Ultrasound Med Biol. 2012; 38: 1589-1598
        • Leighton T.G.
        The acoustic bubble.
        Academic Press, San Diego1994
        • Marquet F.
        • Tung Y.-S.
        • Teichert T.
        • Ferrera V.P.
        • Konofagou E.E.
        Noninvasive, transient and selective blood–brain barrier opening in non-human primates in vivo.
        PLoS One. 2011; 6: e22598
        • McDannold N.
        • Vykhodtseva N.
        • Hynynen K.
        Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity.
        Phys Med Biol. 2006; 51: 793-807
        • Molina C.A.
        • Ribo M.
        • Rubiera M.
        • Montaner J.
        • Santamarina E.
        • Delgado-Mederos R.
        • Arenillas J.F.
        • Huertas R.
        • Purroy F.
        • Delgado P.
        • Alvarez-Sabín J.
        Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator.
        Stroke. 2006; 37: 425-429
        • O'Reilly M.A.
        • Hynynen K.
        Feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller.
        Radiology. 2012; 263: 96-106
        • O'Reilly M.A.
        • Jones R.M.
        • Hynynen K.
        Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array.
        IEEE Trans Biomed Eng. 2014; 61: 1285-1294
        • O'Reilly M.A.
        • Waspe A.C.
        • Ganguly M.
        • Hynynen K.
        Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: Influence of sonication parameters and injection rate.
        Ultrasound Med Biol. 2011; 37: 587-594
        • Pacella J.J.
        • Brands J.
        • Schnatz F.G.
        • Black J.J.
        • Chen X.
        • Villanueva F.S.
        Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: An in vivo study.
        Ultrasound Med Biol. 2015; 41: 456-464
        • Papaioannou T.G.
        • Stefanadis C.
        Vascular wall shear stress: Basic principles and methods.
        Hellenic J Cardiol. 2005; 46: 9-15
        • Park E.
        • Zhang Y.
        • Vykhodtseva N.
        • Mcdannold N.
        Ultrasound-mediated blood–brain/blood–tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model.
        J Control Release. 2012; 163: 277-284
        • Postema M.
        • van Wamel A.
        • Lancée C.T.
        • de Jong N.
        Ultrasound-induced encapsulated microbubble phenomena.
        Ultrasound Med Biol. 2004; 30: 827-840
        • Pries A.R.
        • Neuhaus D.
        • Gaehtgens P.
        Blood viscosity in tube flow: dependence on diameter and hematocrit.
        Am J Physiol Heart Circ Physiol. 1992; 263: H1770-H1778
        • Pu G.
        • Borden M.A.
        • Longo M.L.
        Collapse and shedding transitions in binary lipid monolayers coating microbubbles.
        Langmuir. 2006; 22: 2993-2999
        • Rosenson R.S.
        • McCormick A.
        • Uretz E.F.
        Distribution of blood viscosity values and biochemical correlates in healthy adults.
        Clin Chem. 1996; 42: 1189-1195
        • Shutilov V.A.
        Fundamental physics of ultrasound.
        Gordon and Breach, Amsterdam1988
      1. Soneson JE. A user-friendly software package for HIFU simulation. In: AIP Conference Proceedings, 8th International Symposium on Therapeutic Ultrasound, 2009:165–169.

        • Sonka M.
        • Hlavac V.
        • Boyle R.
        Border detection as dynamic programming.
        in: Imaging processing, analysis and machine vision. Cengage Learning, London, UK1998
        • Storey B.
        Shape stability of sonoluminescence bubbles: Comparison of theory to experiments.
        Phys Rev E. 2001; 64: 017301
        • Tachibana K.
        • Tachibana S.
        Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis.
        Circulation. 1995; 92: 1148-1150
        • Tinkov S.
        • Coester C.
        • Serba S.
        • Geis N.A.
        • Katus H.A.
        • Winter G.
        • Bekeredjian R.
        New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization.
        J Control Release. 2010; 148: 368-372
        • Tung Y.
        • Vlachos F.
        • Feshitan J.A.
        • Borden M.A.
        • Konofagou E.E.
        The mechanism of interaction between focused ultrasound and microbubbles in blood–brain barrier opening in mice.
        J Acoust Soc Am. 2011; 130: 3059-3067
        • Van Wamel A.
        • Kooiman K.
        • Harteveld M.
        • Emmer M.
        • ten Cate F.J.
        • Versluis M.
        • de Jong N.
        Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation.
        J Control Release. 2006; 112: 149-155
        • Versluis M.
        • Goertz D.E.
        • Palanchon P.
        • Heitman I.L.
        • van der Meer S.M.
        • Dollet B.
        • de Jong N.
        • Lohse D.
        Microbubble shape oscillations excited through ultrasonic parametric driving.
        Phys Rev E. 2010; 82: 026321
        • Vos H.J.
        • Dollet B.
        • Versluis M.
        • de Jong N.
        Nonspherical shape oscillations of coated microbubbles in contact with a wall.
        Ultrasound Med Biol. 2011; 37: 935-948
        • Walker A.
        • Naylor G.P.
        • Humphries W.V.
        Measurement of blood viscosity using a conicylindrical viscometer.
        Med Biol Eng. 1976; 14: 551-557
        • Wang J.
        • Chen X.
        • Pacella J.J.
        • Villanueva F.S.
        Therapeutic potential of long ultrasound tone bursts in microbubble-ultrasound mediated therapeutics: mechanistic insights using high speed imaging. In: Proceedings,American Heart Association Scientific Sessions and Resuscitation Science Symposium 2012.
        Circulation. 2012; 126: A19653
        • Wang S.
        • Olumolade O.O.
        • Sun T.
        • Samiotaki G.
        • Konofagou E.E.
        Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.
        Gene Ther. 2015; 22: 104-110
        • Weber-Adrian D.
        • Thévenot E.
        • O'Reilly M.
        • Oakden W.
        • Akens M.
        • Ellens N.
        • Markham-Coultes K.
        • Burgess A.
        • Finkelstein J.
        • Yee A.
        • Whyne C.
        • Foust K.
        • Kaspar B.
        • Stanisz G.
        • Chopra R.
        • Hynynen K.
        • Aubert I.
        Gene delivery to the spinal cord using MRI-guided focused ultrasound.
        Gene Ther. 2015; 22: 568-577
        • Weller G.E.
        • Villanueva F.S.
        • Klibanov A.L.
        • Wagner W.R.
        Modulating targeted adhesion of an ultrasound contrast agent to dysfunctional endothelium.
        Ann Biomed Eng. 2002; 30: 1012-1019
        • Windberger U.
        • Bartholovitsch A.
        • Plasenzotti R.
        • Korak K.J.
        • Heinze G.
        Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: Reference values and comparison of data.
        Exp Physiol. 2003; 88: 431-440
        • Wu C.C.
        • Roberts P.H.
        Bubble shape instability and sonoluminescence.
        Phys Lett A. 1998; 250: 131-136