Advertisement
Original Contribution| Volume 42, ISSUE 2, P459-470, February 2016

Image-Guided Focused Ultrasound-Mediated Regional Brain Stimulation in Sheep

      Abstract

      Non-invasive brain stimulation using focused ultrasound has largely been carried out in small animals. In the present study, we applied stimulatory focused ultrasound transcranially to the primary sensorimotor (SM1) and visual (V1) brain areas in sheep (Dorset, all female, n = 8), under the guidance of magnetic resonance imaging, and examined the electrophysiologic responses. By use of a 250-kHz focused ultrasound transducer, the area was sonicated in pulsed mode (tone-burst duration of 1 ms, duty cycle of 50%) for 300 ms. The acoustic intensity at the focal target was varied up to a spatial peak pulse-average intensity (Isppa) of 14.3 W/cm2. Sonication of SM1 elicited electromyographic responses from the contralateral hind leg, whereas stimulation of V1 generated electroencephalographic potentials. These responses were detected only above a certain acoustic intensity, and the threshold intensity, as well as the degree of responses, varied among sheep. Post-sonication animal behavior was normal, but minor microhemorrhages were observed from the V1 areas exposed to highly repetitive sonication (every second for ≥500 times for electroencephalographic measurements, Isppa = 6.6–10.5 W/cm2, mechanical index = 0.9–1.2). Our results suggest the potential translational utility of focused ultrasound as a new brain stimulation modality, yet also call for caution in the use of an excessive number of sonications.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bachtold M.R.
        • Rinaldi P.C.
        • Jones J.P.
        • Reines F.
        • Price L.R.
        Focused ultrasound modifications of neural circuit activity in a mammalian brain.
        Ultrasound Med Biol. 1998; 24: 557-565
        • Boltze J.
        • Förschler A.
        • Nitzsche B.
        • Waldmin D.
        • Hoffmann A.
        • Boltze C.M.
        • Dreyer A.Y.
        • Goldammer A.
        • Reischauer A.
        • Härtig W.
        • Geiger K.D.
        • Barthel H.
        • Emmrich F.
        • Gille U.
        Permanent middle cerebral artery occlusion in sheep: A novel large animal model of focal cerebral ischemia.
        J Cereb Blood Flow Metab. 2008; 28: 1951-1964
        • Bystritsky A.
        • Korb A.S.
        • Douglas P.K.
        • Cohen M.S.
        • Melega W.P.
        • Mulgaonkar A.P.
        • DeSalles A.
        • Min B.K.
        • Yoo S.S.
        A review of low-intensity focused ultrasound pulsation.
        Brain Stimul. 2011; 4: 125-136
        • Clarke P.G.
        • Whitteridge D.
        The cortical visual areas of the sheep.
        J Physiol. 1976; 256: 497-508
        • Collins C.M.
        • Smith M.B.
        • Turner R.
        Model of local temperature changes in brain upon functional activation.
        J Appl Physiol. 2004; 97: 2051-2055
        • Deblieck C.
        • Thompson B.
        • Iacoboni M.
        • Wu A.D.
        Correlation between motor and phosphene thresholds: A transcranial magnetic stimulation study.
        Hum Brain Mapp. 2008; 29: 662-670
        • Deffieux T.
        • Younan Y.
        • Wattiez N.
        • Tanter M.
        • Pouget P.
        • Aubry J.F.
        Low-intensity focused ultrasound modulates monkey visuomotor behavior.
        Curr Biol. 2013; 23: 2430-2433
        • Deisseroth K.
        Optogenetics.
        Nat Methods. 2011; 8: 26-29
        • Duck F.A.
        Medical and non-medical protection standards for ultrasound and infrasound.
        Prog Biophys Mol Biol. 2007; 93: 176-191
        • Eken T.
        Spontaneous electromyographic activity in adult rat soleus muscle.
        J Neurophysiol. 1998; 80: 365-376
        • Elias W.J.
        • Huss D.
        • Voss T.
        • Loomba J.
        • Khaled M.
        • Zadicario E.
        • Frysinger R.C.
        • Sperling S.A.
        • Wylie S.
        • Monteith S.J.
        • Druzgal J.
        • Shah B.B.
        • Harrison M.
        • Wintermark M.
        A pilot study of focused ultrasound thalamotomy for essential tremor.
        N Engl J Med. 2013; 369: 640-648
        • Fitzpatrick J.M.
        • West J.B.
        The distribution of target registration error in rigid-body point-based registration.
        IEEE Trans Med Imaging. 2001; 20: 917-927
        • Fregni F.
        • Pascual-Leone A.
        Technology insight: Noninvasive brain stimulation in neurology—Perspectives on the therapeutic potential of rTMS and tDCS.
        Nat Clin Pract Neurol. 2007; 3: 383-393
        • Fry W.J.
        • Barnard J.W.
        • Fry F.J.
        • Brennan J.F.
        Ultrasonically produced localized selective lesions in the central nervous system.
        Am J Phys Med. 1955; 34: 413-423
        • Fry F.J.
        • Ades H.W.
        • Fry W.J.
        Production of reversible changes in the central nervous system by ultrasound.
        Science. 1958; 127: 83-84
        • Fry W.J.
        • Fry F.J.
        Fundamental neurological research and human neurosurgery using intense ultrasound.
        IRE Trans Med Electron. 1960; ME-7: 166-181
        • Garman R.H.
        Artifacts in routinely immersion fixed nervous tissue.
        Toxicol Pathol. 1990; 18: 149-153
        • George M.S.
        • Aston-Jones G.
        Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS).
        Neuropsychopharmacology. 2010; 35: 301-316
        • Goss S.A.
        • Frizzell L.A.
        • Dunn F.
        Ultrasonic absorption and attenuation in mammalian tissues.
        Ultrasound Med Biol. 1979; 5: 181-186
        • Hallett M.
        Transcranial magnetic stimulation and the human brain.
        Nature. 2000; 406: 147-150
        • Harper A.M.
        • Glass H.I.
        Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures.
        J Neurol Neurosurg Psychiatry. 1965; 28: 449-452
        • Hoy K.E.
        • Fitzgerald P.B.
        Brain stimulation in psychiatry and its effects on cognition.
        Nat Rev Neurol. 2010; 6: 267-275
        • Huber D.
        • Petreanu L.
        • Ghitani N.
        • Ranade S.
        • Hromádka T.
        • Mainen Z.
        • Svoboda K.
        Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice.
        Nature. 2008; 451: 61-64
        • Hynynen K.
        • Freund W.R.
        • Cline H.E.
        • Chung A.H.
        • Watkins R.D.
        • Vetro J.P.
        • Jolesz F.A.
        A clinical, noninvasive, MR imaging-monitored ultrasound surgery method.
        Radiographics. 1996; 16: 185-195
        • Hynynen K.
        • Clement G.T.
        • McDannold N.
        • Vykhodtseva N.
        • King R.
        • White P.J.
        • Vitek S.
        • Jolesz F.A.
        500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls.
        Magn Reson Med. 2004; 52: 100-107
        • Jolesz F.A.
        • Hynynen K.
        • McDannold N.
        • Tempany C.
        MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery.
        Magn Reson Imaging Clin N Am. 2005; 13: 545-560
        • Kim H.
        • Chiu A.
        • Park S.
        • Yoo S.S.
        Image-guided navigation of single-element focused ultrasound transducer.
        Int J Imaging Syst Technol. 2012; 22: 177-184
        • Kim H.
        • Lee S.D.
        • Chiu A.
        • Yoo S.S.
        • Park S.
        Estimation of the spatial profile of neuromodulation and the temporal latency in motor responses induced by focused ultrasound brain stimulation.
        Neuroreport. 2013; 25: 475-479
        • Kim H.
        • Chiu A.
        • Lee S.D.
        • Fischer K.
        • Yoo S.S.
        Focused ultrasound-mediated non-invasive brain stimulation: Examination of sonication parameters.
        Brain Stimul. 2014; 7: 748-756
        • Kim H.
        • Park M.Y.
        • Lee S.D.
        • Lee W.
        • Chiu A.
        • Yoo S.S.
        Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound.
        Neuroreport. 2015; 26: 211-215
        • King R.L.
        • Brown J.R.
        • Newsome W.T.
        • Pauly K.B.
        Effective parameters for ultrasound-induced in vivo neurostimulation.
        Ultrasound Med Biol. 2013; 39: 312-331
        • Krasovitski B.
        • Frenkel V.
        • Shoham S.
        • Kimmel E.
        Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.
        Proc Natl Acad Sci U S A. 2011; 108: 3258-3263
        • Lee W.
        • Kim H.
        • Jung Y.
        • Song I.U.
        • Chung Y.A.
        • Yoo S.S.
        Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex.
        Sci Rep. 2015; 5: 8743
        • Legon W.
        • Sato T.F.
        • Opitz A.
        • Mueller J.
        • Barbour A.
        • Williams A.
        • Tyler W.J.
        Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans.
        Nat Neurosci. 2014; 17: 322-329
        • Lele P.P.
        A simple method for production of trackless focal lesions with focused ultrasound: physical factors.
        J Physiol. 1962; 160: 494-512
        • Loo C.K.
        • Mitchell P.B.
        A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy.
        J Affect Disord. 2005; 88: 255-267
        • Lynn J.G.
        • Zwemer R.L.
        • Chick A.J.
        • Miller A.E.
        A new method for the generation and use of focused ultrasound in experimental biology.
        J Gen Physiol. 1942; 26: 179-193
        • Maes F.
        • Collignon A.
        • Vandermeulen D.
        • Marchal G.
        • Suetens P.
        Multimodality image registration by maximization of mutual information.
        IEEE Trans Med Imaging. 1997; 16: 187-198
        • Martin E.
        • Jeanmonod D.
        • Morel A.
        • Zadicario E.
        • Werner B.
        High-intensity focused ultrasound for noninvasive functional neurosurgery.
        Ann Neurol. 2009; 66: 858-861
        • Masamoto K.
        • Kanno I.
        Anesthesia and the quantitative evaluation of neurovascular coupling.
        J Cereb Blood Flow Metab. 2012; 32: 1233-1247
        • Matta B.F.
        • Heath K.J.
        • Tipping K.
        • Summors A.C.
        Direct cerebral vasodilatory effects of sevoflurane and isoflurane.
        Anesthesiology. 1999; 91: 677-680
        • McDannold N.
        • Vykhodtseva N.
        • Jolesz F.A.
        • Hynynen K.
        MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain.
        Magn Reson Med. 2004; 51: 913-923
        • Mehić E.
        • Xu J.M.
        • Caler C.J.
        • Coulson N.K.
        • Moritz C.T.
        • Mourad P.D.
        Increased anatomical specificity of neuromodulation via modulated focused ultrasound.
        PLoS One. 2014; 9: e86939
        • Mesiwala A.H.
        • Farrell L.
        • Wenzel H.J.
        • Silbergeld D.L.
        • Crum L.A.
        • Winn H.R.
        • Mourad P.D.
        High-intensity focused ultrasound selectively disrupts the blood–brain barrier in vivo.
        Ultrasound Med Biol. 2002; 28: 389-400
        • Miesenböck G.
        The optogenetic catechism.
        Science. 2009; 326: 395-399
        • Min B.K.
        • Bystritsky A.
        • Jung K.I.
        • Fischer K.
        • Zhang Y.
        • Maeng L.S.
        • Park S.I.
        • Chung Y.A.
        • Jolesz F.
        • Yoo S.S.
        Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity.
        BMC Neurosci. 2011; 12: 23
        • Min B.K.
        • Yang P.S.
        • Bohlke M.
        • Park S.
        • Vago D.R.
        • Maher T.J.
        • Yoo S.S.
        Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique.
        Int J Imaging Syst Technol. 2011; 21: 232-240
        • Muellbacher W.
        • Ziemann U.
        • Boroojerdi B.
        • Hallett M.
        Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.
        Clin Neurophysiol. 2000; 111: 1002-1007
        • O'Brien W.D.
        Ultrasound—Biophysics mechanisms.
        Prog Biophys Mol Biol. 2007; 93: 212-255
        • Ostrow L.W.
        • Suchyna T.M.
        • Sachs F.
        Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs).
        Biochem Biophys Res Commun. 2011; 410: 81-86
        • Plaksin M.
        • Shoham S.
        • Kimmel E.
        Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation.
        Phys Rev X. 2014; 4: 011004
        • Reiz S.
        • Bålfors E.
        • Sørensen M.B.
        • Ariola S.
        • Friedman A.
        • Truedsson H.
        Isoflurane—A powerful coronary vasodilator in patients with coronary artery disease.
        Anesthesiology. 1983; 59: 91-97
        • Rinaldi P.C.
        • Jones J.P.
        • Reines F.
        • Price L.R.
        Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation.
        Brain Res. 1991; 558: 36-42
        • Rothwell J.C.
        • Thompson P.D.
        • Day B.L.
        • Dick J.P.R.
        • Kachi T.
        • Cowan J.M.A.
        • Marsden C.D.
        Motor cortex stimulation in intact man.
        Brain. 1987; 110: 1173-1190
        • Schmidt E.M.
        • Bak M.J.
        • Hambrecht F.T.
        • Kufta C.V.
        • O'Rourke D.K.
        • Vallabhanath P.
        Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex.
        Brain. 1996; 119: 507-522
        • Simpson S.
        • King J.L.
        Localisation of the motor area in the sheep.
        Exp Physiol. 1911; 4: 53-65
        • Steiss J.E.
        • Argue C.K.
        Normal values for radial, peroneal and tibial motor nerve conduction velocities in adult sheep, with comparison to adult dogs.
        Vet Res Commun. 1987; 11: 243-252
        • Stypulkowski P.H.
        • Stanslaski S.R.
        • Jensen R.M.
        • Denison T.J.
        • Giftakis J.E.
        Brain stimulation for epilepsy—Local and remote modulation of network excitability.
        Brain Stimul. 2014; 7: 350-358
        • Teschan P.
        • Gellhorn E.
        Influence of increased temperature on activity of the cerebral cortex.
        Am J Physiol. 1949; 159: 1-5
        • Tovi M.
        • Ericsson A.
        Measurements of T1 and T2 over time in formalin-fixed human whole-brain specimens.
        Acta Radiol. 1992; 33: 400-404
        • Tsurugizawa T.
        • Uematsu A.
        • Uneyama H.
        • Torii K.
        Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested L-glutamate in rats.
        Neuroscience. 2010; 165: 244-251
        • Tufail Y.
        • Matyushov A.
        • Baldwin N.
        • Tauchmann M.L.
        • Georges J.
        • Yoshihiro A.
        • Tillery S.I.H.
        • Tyler W.J.
        Transcranial pulsed ultrasound stimulates intact brain circuits.
        Neuron. 2010; 66: 681-694
        • Tufail Y.
        • Yoshihiro A.
        • Pati S.
        • Li M.M.
        • Tyler W.J.
        Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound.
        Nat Protoc. 2011; 6: 1453-1470
        • Tyler W.J.
        • Tufail Y.
        • Finsterwald M.
        • Tauchmann M.L.
        • Olson E.J.
        • Majestic C.
        Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound.
        PLoS One. 2008; 3: e3511
        • Vallancien G.
        • Harouni M.
        • Veillon B.
        • Mombet A.
        • Prapotnich D.
        • Brisset J.M.
        • Bougaran J.
        Focused extracorporeal pyrotherapy: Feasibility study in man.
        J Endourol. 1992; 6: 173-181
        • Van den Heuvel C.
        • Blumbergs P.C.
        • Finnie J.W.
        • Manavis J.
        • Jones N.R.
        • Reilly P.L.
        • Pereira R.A.
        Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: An ovine head impact model.
        Exp Neurol. 1999; 159: 441-450
        • Yang R.
        • Sanghvi N.T.
        • Rescorla F.J.
        • Galliani C.A.
        • Fry F.J.
        • Griffith S.L.
        • Grosfeld J.L.
        Extracorporeal liver ablation using sonography-guided high-intensity focused ultrasound.
        Invest Radiol. 1992; 27: 796-803
        • Yang P.S.
        • Kim H.
        • Lee W.
        • Bohlke M.
        • Park S.
        • Maher T.J.
        • Yoo S.S.
        Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats.
        Neuropsychobiology. 2012; 65: 153-160
        • Yoo S.S.
        • Bystritsky A.
        • Lee J.H.
        • Zhang Y.
        • Fischer K.
        • Min B.K.
        • McDannold N.J.
        • Pascual-Leone A.
        • Jolesz F.A.
        Focused ultrasound modulates region-specific brain activity.
        Neuroimage. 2011; 56: 1267-1275
        • Younan Y.
        • Deffieux T.
        • Larrat B.
        • Fink M.
        • Tanter M.
        • Aubry J.F.
        Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
        Med Phys. 2013; 40: 082902