Advertisement

Characterizing Phantom Arteries with Multi-channel Laser Ultrasonics and Photo-acoustics

      Abstract

      Multi-channel photo-acoustic and laser ultrasonic waves are used to sense the characteristics of proxies for healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser source and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude, we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology to improve the signal-to-noise ratio of data. We identify vessel proxies with a diameter on the order of 1 mm, at a depth of 18 mm. Variations in scattered and photo-acoustic signatures are related to differences in vessel wall properties and content. The methods described have the potential to improve imaging and better inform interventions for atherosclerotic vessels, such as the carotid artery.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Afifi H.A.
        Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC.
        Polym Plast Technol. 2003; 42: 193-205
        • Allen T.J.
        • Hall A.
        • Dhillon A.P.
        • Owen J.S.
        • Beard P.C.
        Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range.
        J Biomed Opt. 2012; 17: 061209
      1. American National Standards Institute (ANSI). American national standard for safe use of lasers. ANSI 136.1–2007. Orlando, FL: Laser Institute of America, 2007.

        • Arthurs Z.M.
        • Bishop P.D.
        • Feiten L.E.
        • Eagleton M.J.
        • Clair D.G.
        • Kashyap V.S.
        Evaluation of peripheral atherosclerosis: A comparative analysis of angiography and intravascular ultrasound imaging.
        J Vasc Surg. 2010; 51: 933-938
        • Baumgart D.
        • Schmermund A.
        • Goerge G.
        • Haude M.
        • Ge J.
        • Adamzik M.
        • Sehnert C.
        • Altmaier K.
        • Groenemeyer D.
        • Seibel R.
        • Erbel R.
        Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis.
        J Am Coll Cardiol. 1997; 30: 57-64
        • Beard J.
        Biomedical photoacoustic imaging.
        Interface Focus. 2011; 1: 602-631
        • Bing W.
        • Guo T.
        • Hua W.
        • Bolei T.
        Extracting near-borehole P and S reflections from array sonic logging data.
        J Geophys Eng. 2011; 8: 308-315
        • Bloomfield P.E.
        • Lo W.J.
        • Lewin P.A.
        Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TRFE) films.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2000; 47: 1397-1404
        • Briley-Saebo K.C.
        • Mulder W.J.M.
        • Mani V.
        • Hyafil F.
        • Amirbekian V.
        • Aguinaldo J.G.S.
        • Fisher E.A.
        • Fayad Z.A.
        Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes.
        J Magn Reson Imaging. 2007; 26: 460-479
        • Broz J.J.
        • Simske S.J.
        • Greenberg A.R.
        Material and compositional properties of selectively demineralized cortical bone.
        J Biomech. 1995; 28: 1357-1368
        • Cubeddu R.
        • Pifferi A.
        • Taroni P.
        • Torricelli A.
        • Valentini G.
        A solid tissue phantom for photon migration studies.
        Phys Med Biol. 1997; 42: 1971-1979
        • Driver I.
        • Feather J.W.
        • King P.R.
        • Dawson J.B.
        The optical properties of aqueous suspensions of intralipid, a fat emulsion.
        Phys Med Biol. 1989; 34: 1927-1930
        • Duck F.A.
        Physical properties of tissue: A comprehensive reference network.
        Academic Press, New York1990
        • Dunkin J.W.
        • Levin F.K.
        Effect of normal moveout on a seismic pulse.
        Geophysics. 1973; 38: 635-642
        • Faggioli G.L.
        • Pini R.
        • Mauro R.
        • Pasquinelli G.
        • Fittipaldi S.
        • Freyrie A.
        • Serra C.
        • Stella A.
        Identification of carotid ’vulnerable plaque’ by contrast-enhanced ultrasonography: Correlation with plaque histology, symptoms and cerebral computed tomography.
        Eur J Vasc Endovasc Surg. 2011; 41: 238-248
        • Flock S.T.
        • Jacques S.L.
        • Wilson B.C.
        • Star W.M.
        • van Gemert M.J.C.
        Optical properties of intralipid: A phantom medium for light propagation studies.
        Lasers Surg Med. 1992; 12: 510-519
        • Fok P.W.
        Growth of necrotic cores in atherosclerotic plaque.
        Math Med Biol. 2012; 29: 301-327
        • Gomez C.R.
        Carotid plaque morphology and risk for stroke.
        Stroke. 1990; 21: 148-151
        • Ha S.
        • Carson A.
        • Agarwal A.
        • Kotov N.A.
        • Kim K.
        Detection and monitoring of the multiple inflammatory responses by photoacoustic and molecular imaging using selectively targeted gold nanorods.
        Biomed Opt Express. 2011; 2: 645-657
        • Hayashi N.
        • Sato M.
        F-k filter designs to suppress direct waves for bistatic ground penetrating radar.
        IEEE Trans Geosci Remote Sensing. 2010; 48: 1433-1444
      2. Johnson JL. Toward characterization of diseased vascular structures using noncontact photoacoustic and laser-ultrasound imaging: A phantom study. Master’s thesis, Boise State University, 2013.

        • Kim K.
        • Huang S.W.
        • Ashkenazi S.
        • O’Donnell M.
        • Agarwal A.
        • Kotov N.A.
        • Denny M.F.
        • Kaplan M.J.
        Photoacoustic imaging of early inflammatory response using gold nanorods.
        Appl Phys Lett. 2007; 90: 223901
        • Kinnunen M.
        • Myllylä R.
        Effect of glucose on photoacoustic signals at the wavelengths of 1064 nm and 532 nm in pig blood and intralipid.
        J Phys D. 2005; 38: 2654-2661
        • Lattermann A.
        • Matthäus C.
        • Bergner N.
        • Beleites C.
        • Romeike B.F.
        • Krafft C.
        • Brehm B.R.
        • Popp J.
        Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging.
        J Biophotonics. 2013; 6: 110-121
        • Li X.
        • Wei W.
        • Zhou Q.
        • Shung K.K.
        • Chen Z.
        Intravascular photoacoustic imaging at 35 to 80 MHz.
        J Biomed Opt. 2012; 17: 106005
      3. Mendis S. Puska P. Norrving B. Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva2011
        • Mollet N.R.
        • Cademartiri F.
        • de Feyter P.J.
        Non-invasive multislice CT coronary imaging.
        Heart. 2005; 91: 401-407
        • Naghavi M.
        • Libby P.
        • Falk E.
        • Casscells S.W.
        • Litovsky S.
        • Rumberger J.
        • Badimon J.J.
        • Stefanadis C.
        • Moreno P.
        • Pasterkamp G.
        • Fayad Z.
        • Stone P.H.
        • Waxman S.
        • Raggi P.
        • Madjid M.
        • Zarrabi A.
        • Burke A.
        • Yuan C.
        • Fitzgerald P.J.
        • Siscovick D.S.
        • Korte C.L.D.
        • Aikawa M.
        • Airaksinen K.E.J.
        • Assmann G.
        • Becker C.R.
        • Chesebro J.H.
        • Farb A.
        • Galis Z.S.
        • Jackson C.
        • Jang I.K.
        • Koenig W.
        • Lodder R.A.
        • March K.
        • Demirovic J.
        • Navab M.
        • Priori S.G.
        • Rekhter M.D.
        • Bahr R.
        • Grundy S.M.
        • Mehran R.
        • Colombo A.
        • Boerwinkle E.
        • Ballantyne C.
        • . Insull Jr., W.
        • Schwartz R.S.
        • Vogel R.
        • Serruys P.W.
        • Hansson G.K.
        • Faxon D.P.
        • Kaul S.
        • Drexler H.
        • Greenland P.
        • Muller J.E.
        • Virmani R.
        • Ridker P.M.
        • Zipes D.P.
        • Shah P.K.
        • Willerson J.T.
        From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I.
        Circulation. 2003; 108: 1664-1672
        • Pasterkamp G.
        • Schoneveld A.H.
        • van der Wal A.C.
        • Hijnen D.J.
        • van Wolveren W.J.A.
        • Plomp S.
        • Teepen H.L.J.M.
        • Borst C.
        Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries.
        Arterioscler Thromb Vasc Biol. 1999; 19: 54-59
        • Pavan T.Z.
        • Madsen E.L.
        • Frank G.R.
        • Corneiro A.A.O.
        • Hall T.J.
        Nonlinear elastic behavior of phantom materials for elastography.
        Phys Med Biol. 2010; 55: 2679-2962
        • Raggi P.
        • Bellasi A.
        Clinical assessment of vascular calcification.
        Adv Chronic Kidney Dis. 2007; 14: 37-43
        • Richards-Kortum R.
        Biomedical engineering for global health.
        Cambridge University Press, London2010
        • Rousseau G.
        • Blouin A.
        • Monchalin J.
        Non-contact photoacoustic tomography and ultrasonography for tissue imaging.
        Biomed Opt Express. 2012; 3: 16-25
        • Rousseau G.
        • Gauthier B.
        • Blouin A.
        • Monchalin J.
        Non-contact biomedical photoacoustic and ultrasound imaging.
        J Biomed Opt. 2012; 17: 061217
        • Rupert G.B.
        • Chun J.H.
        The block move sum normal moveout correction.
        Geophysics. 1975; 40: 17-24
        • Saam T.
        • Hatsukami T.S.
        • Takaya N.
        • Chu B.
        • Underhill H.
        • Kerwin W.S.
        • Cai J.
        • Ferguson M.S.
        • Yuan C.
        Noninvasive MR imaging for characterization and assessment.
        Radiology. 2007; 244: 64-77
        • Scruby C.B.
        • Drain L.E.
        Laser ultrasonics: Techniques and applications.
        Taylor & Francis, London1990
        • Selfridge A.R.
        Approximate material properties in isotropic materials.
        IEEE Trans Son Ultrason. 1985; 32: 381-394
      4. Sethuraman S, Aglyamov S, Amirian J, Smalling R, Emelianov S. Intravascular photoacoustic imaging to detect and differentiate atherosclerotic plaques. In: Proceedings, 2005 IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September. New York: IEEE, 2005;1:133–136.

        • Taki H.
        • Sakamoto T.
        • Yamakawa M.
        • Shiina T.
        • Sato T.
        Small calcification indicator in ultrasonography using correlation of echoes with a modified wiener filter.
        J Med Ultrason. 2012; 39: 127-135
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1262-1275
        • Wallis de Vries B.M.
        • van Dam G.M.
        • Tio R.A.
        • Hillebrands J.L.
        • Slart R.H.
        • Zeebregts C.J.
        Current imaging modalities to visualize vulnerability within the atherosclerotic carotid plaque.
        J Vasc Surg. 2008; 48: 1620-1629
        • Wang B.
        • Karpiouk A.
        • Yeager D.
        • Amirian J.
        • Litovsky S.
        • Smalling R.
        • Emelianov S.
        In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis.
        Ultrasound Med Biol. 2012; 38: 2098-2103
      5. Wang L. Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton, FL2009
        • Wang Z.
        • Kyono H.
        • Bezerra H.G.
        • Wang H.
        • Gargesha M.
        • Alraies C.
        • Xu C.
        • Schmitt J.M.
        • Wilson D.L.
        • Costa M.A.
        • Rollins A.M.
        Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images.
        J Biomed Opt. 2010; 15: 061711
        • Wexler L.
        • Brundage B.
        • Crouse J.
        • Detrano R.
        • Fuster V.
        • Maddahi J.
        • Rumberger J.
        • Stanford W.
        • White R.
        • Taubert K.
        Coronary artery calcification: Pathophysiology, epidemiology, imaging methods, and clinical implications.
        Circulation. 1996; 94: 1175-1192
        • Yao J.
        • Wang L.V.
        Photoacoustic tomography: Fundamental advances and prospects.
        Contrast Media Mol Imaging. 2011; 6: 332-345
        • Yao L.
        • Sun Y.
        • Jiang H.
        Transport-based quantitative photoacoustic tomography: simulations and experiments.
        Phys Med Biol. 2010; 55: 1917-1934
        • Yeager D.
        • Karpiouk A.
        • Wang B.
        • Amirian J.
        • Sokolov K.
        • Smalling R.
        • Emelianov S.
        Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood.
        J Biomed Opt. 2012; 17: 106016