Original Contribution| Volume 40, ISSUE 2, P389-399, February 2014

VEGFR2-Targeted Molecular Imaging in the Mouse Embryo: An Alternative to the Tumor Model


      As a tumor surrogate, the mouse embryo presents as an excellent alternative for examining the binding of angiogenesis-targeting microbubbles and assessing the quantitative nature of molecular ultrasound. We establish the validity of this model by developing a robust method to study microbubble kinetic behavior and investigate the reproducibility of targeted binding in the murine embryo. Vascular endothelial growth factor receptor 2 (VEGFR2)-targeted (MBV), rat immunoglobulin G2 (IgG2) control antibody-targeted (MBC) and untargeted (MBU) microbubbles were introduced into vasculature of living mouse embryos. Non-linear contrast-specific and B-mode ultrasound imaging, performed at 21 MHz with a Vevo-2100 scanner, was used to collect basic perfusion parameters and contrast mean power ratios for all bubble types. We observed a twofold increase (p < 0.001) in contrast mean power ratios for MBV (4.14 ± 1.78) compared with those for MBC (1.95 ± 0.78) and MBU (1.79 ± 0.45). Targeted imaging of endogenous endothelial cell surface markers in mouse embryos is possible with labeled microbubbles. The mouse embryo thus presents as a versatile model for testing the performance of ultrasound molecular targeting, where further development of quantitative imaging techniques may enable rapid evaluations of biomarker expression in studies of vascular development, disease and angiogenesis.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Allen Institute for Brain Science. Allen developing mouse brain atlas. November 9, 2012. Available at:

        • Anderson C.R.
        • Hu X.
        • Zhang H.
        • Tlaxca J.
        • Declèves A.E.
        • Houghtaling R.
        • Sharma K.
        • Lawrence M.
        • Ferrara K.W.
        • Rychak J.J.
        Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent.
        Invest Radiol. 2011; 46: 215-224
      2. Aristizábal O., Williamson R., Turnbull D.H., 12 A-4 In vivo 3-D contrast-enhanced imaging of the embryonic mouse vasculature. In: Proceedings, 2007 Ultrasonics Symposium, New York City, October 28–31 2007. New York: IEEE, 2007:1073.

        • Bartelle B.B.
        • Berríos-Otero C.A.
        • Rodriguez J.J.
        • Friendland A.E.
        • Aristizábal O.
        • Turnbull D.H.
        Novel genetic approach for in vivo vascular imaging in mice.
        Circ Res. 2012; 110: 938-947
        • Buchanan C.F.
        • Voight E.E.
        • Szot C.S.
        • Freeman J.W.
        • Vlachos P.P.
        • Rylander M.N.
        Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
        Tissue Engineering Part C Methods. 2013; ([EPub ahead of print])
        • Corrigan N.
        • Brazil D.
        • McAuliffe F.
        High-frequency ultrasound assessment of the murine heart from embryo through to juvenile.
        Reprod Sci. 2010; 17: 147-157
        • Cosgrove D.
        • Lassau N.
        Imaging of perfusion using ultrasound.
        Eur J Nuclear Med Mol Imaging. 2010; 37: S65-S85
        • Deshpande N.
        • Lutz A.M.
        • Ren Y.
        • Foygel K.
        • Tian L.
        • Schneider M.
        • Pai R.
        • Pasricha P.J.
        • Willmann J.K.
        Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US.
        Radiology. 2012; 262: 172-180
        • Deshpande N.
        • Ren Y.
        • Foygel K.
        • Rosenberg J.
        • Willmann J.K.
        Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging.
        Radiology. 2011; 258: 804-811
        • Endoh M.
        • Koibuchi N.
        • Sato M.
        • Morishita R.
        • Kanzaki T.
        • Murata Y.
        • Kaneda Y.
        Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound.
        Mol Ther. 2002; 5: 501-508
        • Ferrara N.
        Role of vascular endothelial growth factor in regulation of physiological angiogenesis.
        Am J Physiol Cell Physiol. 2001; 280: C1358-C1366
        • Fischer T.
        • Thomas A.
        • Tardy I.
        • Schneider M.
        • Hünigen H.
        • Custodis P.
        • Beyersdorff D.
        • Plendl J.
        • Schnorr J.
        • Diekmann F.
        • Gemeinhardt O.
        Vascular endothelial growth factor receptor 2-specific microbubbles for molecular ultrasound detection of prostate cancer in a rat model.
        Invest Radiol. 2010; 45: 675-684
        • Garcia M.D.
        • Udan R.S.
        • Hadjantonakis A.K.
        • Dickinson M.E.
        Live imaging of mouse embryos.
        Cold Spring Harbor Protocols. 2011; 2011 (pdb. top104)
        • Gessner R.
        • Dayton P.A.
        Advances in molecular imaging with ultrasound.
        Mol Imaging. 2010; 9: 117-127
        • Greene J.M.
        • Dunaway C.W.
        • Bowers S.D.
        • Rude B.J.
        • Feugang J.M.
        • Ryan P.L.
        In vivo monitoring of fetoplacental Vegfr2 gene activity in a murine pregnancy model using a Vegfr2-luc reporter gene and bioluminescent imaging.
        Reprod Biol Endocrinol. 2011; 9: 51
        • Höckel M.
        • Vaupel P.
        Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects.
        J Natl Cancer Inst. 2001; 93: 266-276
        • Inaba Y.
        • Lindner J.R.
        Molecular imaging of disease with targeted contrast ultrasound imaging.
        Transl Res. 2012; 159: 140-148
        • Jansson T.
        • Persson H.W.
        • Lindström K.
        Estimation of blood perfusion using ultrasound.
        Proc Inst Mech Eng Part H. 1999; 213: 91-106
        • Jones E.A.V.
        • Baron M.H.
        • Fraser S.E.
        • Dickinson M.E.
        Measuring hemodynamic changes during mammalian development.
        Am J Physiol. 2004; 287: H1561-H1569
        • Kaufman M.H.
        • Bard J.B.L.
        The anatomical basis of mouse development.
        Elsevier Science, San Diego1999
        • Kiessling F.
        • Fokong S.
        • Koczera P.
        • Lederle W.
        • Lammers T.
        Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics.
        J Nucl Med. 2012; 53: 345-348
        • Klibanov A.
        Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging.
        Med Biol Eng Comput. 2009; 47: 875-882
        • Kulandavelu S.
        • Qu D.
        • Sunn N.
        • Mu J.
        • Rennie M.Y.
        • Whiteley K.J.
        • Walls J.R.
        • Bock N.A.
        • Sun J.C.H.
        • Covelli A.
        • Sled J.G.
        • Adamson S.L.
        Embryonic and neonatal phenotyping of genetically engineered mice.
        ILAR J. 2006; 47: 103-117
        • Kusuoka H.
        • Hoffman J.I.E.
        Advice on statistical analysis for circulation research.
        Circ Res. 2002; 91: 662-671
        • Lampaskis M.
        • Averkiou M.
        Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI.
        Ultrasound Med Biol. 2010; 36: 306-312
        • Liang H.D.
        • Blomley M.J.K.
        The role of ultrasound in molecular imaging.
        Br J Radiol. 2003; 76: S140-S150
        • Lindner J.R.
        Microbubbles in medical imaging: current applications and future directions.
        Nat Rev Drug Discov. 2004; 3: 527-532
        • Lyshchik A.
        • Fleischer A.C.
        • Huamani J.
        • Hallahan D.E.
        • Brissova M.
        • Gore J.C.
        Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography.
        J Ultrasound Med. 2007; 26: 1575-1586
        • Moestue S.A.
        • Gribbestad I.S.
        • Hansen R.
        Intravascular targets for molecular contrast-enhanced ultrasound imaging.
        Int J Mol Sci. 2012; 13: 6679
        • Monsky W.L.
        • Carreira C.M.
        • Tsuzuki Y.
        • Gohongi T.
        • Fukumura D.
        • Jain R.K.
        Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: Mammary fat pad vs cranial tumors.
        Clin Cancer Res. 2002; 8: 1008
        • Mullin L.
        • Gessner R.
        • Kwan J.
        • Kaya M.
        • Borden M.A.
        • Dayton P.A.
        Effect of anesthesia carrier gas on in vivo circulation times of ultrasound microbubble contrast agents in rats.
        Contrast Media Mol Imaging. 2011; 6: 126-131
        • Pysz M.A.
        • Guracar I.
        • Tian L.
        • Willmann J.K.
        Fast microbubble dwell-time based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer.
        Quant Imaging Med Surg. 2012; 2: 68-80
        • Schneider M.
        Ultrasound Contrast Agents.
        in: Kiessling F. Pichler B.J. Small animal imaging: Basics and practical guide. Springer, Berlin2011: 226-228
        • Shojaei F.
        Anti-angiogenesis therapy in cancer: Current challenges and future perspectives.
        Cancer Lett. 2012; 320: 130-137
        • Stewart V.R.
        • Sidhu P.S.
        New directions in ultrasound: Microbubble contrast.
        Br J Radiol. 2006; 79: 188-194
        • Sugimoto K.
        • Moriyasu F.
        • Negishi Y.
        • Hamano N.
        • Oshiro H.
        • Rognin N.G.
        • Yoshida T.
        • Kamiyama N.
        • Aramaki Y.
        • Imai Y.
        Quantification in molecular ultrasound imaging: A comparative study in mice between healthy liver and a human hepatocellular carcinoma xenograft.
        J Ultrasound Med. 2012; 31: 1909-1916
        • Voigt J.U.
        Ultrasound molecular imaging.
        Methods. 2009; 48: 92-97
        • Warram J.M.
        • Sorace A.G.
        • Saini R.
        • Umphrey H.R.
        • Zinn K.R.
        • Hoyt K.
        A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature.
        J Ultrasound Med. 2011; 30: 921-931
        • Watson E.D.
        • Cross J.C.
        Development of structures and transport functions in the mouse placenta.
        Physiology. 2005; 20: 180-193
      3. Whiteley K.J., Pfarrer C.D. and Adamson S.L., Vascular corrosion casting of the uteroplacental and fetoplacental vasculature in mice. In: Methods in molecular medicine: Vol. 121. Placenta and trophoblast: Methods and protocols. Totowa, NJ: Humana Press, 2006:371.

      4. Wijkstra H., Smeenge M., de la Rosette J., Pochon S., Tardy-Cantalupi K. and Tranquart F., Targeted microbubble prostate cancer Imaging with BR55. In: Proceedings, 17th European Symposium on Ultrasound Contrast Imaging, Rotterdam, The Netherlands, 19–20 2012.

        • Willmann J.K.
        • Paulmurugan R.
        • Chan K.
        • Gheysens O.
        • Rodriguez-Porcel M.
        • Lutz A.M.
        • Chen I.Y.
        • Chen X.
        • Gambhir S.S.
        US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice.
        Radiology. 2008; 246: 508-516
        • Yamada M.
        • Hatta T.
        • Otani H.
        Mouse exo utero development system: Protocol and troubleshooting.
        Congenit Anom (Kyoto). 2008; 48: 183-187