Advertisement

Effective Parameters for Ultrasound-Induced In Vivo Neurostimulation

      Abstract

      Ultrasound-induced neurostimulation has recently gained increasing attention, but little is known about the mechanisms by which it affects neural activity or about the range of acoustic parameters and stimulation protocols that elicit responses. We have established conditions for transcranial stimulation of the nervous system in vivo, using the mouse somatomotor response. We report that (1) continuous-wave stimuli are as effective as or more effective than pulsed stimuli in eliciting responses, and responses are elicited with stimulus onset rather than stimulus offset; (2) stimulation success increases as a function of both acoustic intensity and acoustic duration; (3) interactions of intensity and duration suggest that successful stimulation results from the integration of stimulus amplitude over a time interval of 50 to 150 ms; and (4) the motor response elicited appears to be an all-or-nothing phenomenon, meaning stronger stimulus intensities and durations increase the probability of a motor response without affecting the duration or strength of the response.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Institute of Ultrasound in Medicine (AIUM)
        Bioeffects considerations for the safety of diagnostic ultrasound.
        J Ultrasound Med. 1988; 7: S1-S38
        • American Institute of Ultrasound in Medicine (AIUM)
        Section 7—Discussion of the mechanical index and other exposure parameters.
        J Ultrasound Med. 2000; 19: 143-168
        • Aravanis A.M.
        • Wang L.P.
        • Zhang F.
        • Meltzer L.A.
        • Mogri M.Z.
        • Schneider M.B.
        • Deisseroth K.
        An optical neural Interface: in vivo control of rodent motor cortex with integrated fiber-optic and optogenetic technology.
        J Neural Eng. 2007 Sep; 4: S143-S156
        • Brecht M.
        • Krauss A.
        • Muhammad S.
        • Sinai-Esfahani L.
        • Bellanca S.
        • Margrie T.W.
        Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells.
        J Comp Neurol. 2004; 479: 360-373
        • Benham C.D.
        • Gunthorpe M.J.
        • Davis J.B.
        TRPV channels as temperature sensors.
        Cell Calcium. 2003; 33: 479-487
        • Bystritsky A.
        • Korb A.S.
        • Douglas P.K.
        • Cohen M.S.
        • Melega W.P.
        • Mulgaonkar A.P.
        • DeSalles A.
        • Min B.K.
        • Yoo S.S.
        A review of low-intensity focused ultrasound pulsation.
        Brain Stimul. 2011; 4: 125-136
        • Clement G.T.
        • White P.J.
        • King R.L.
        • McDannold N.
        • Hynynen K.
        A magnetic resonance imaging–patible, large-scale array for trans-skull ultrasound surgery and therapy.
        J Ultrasound in Med. 2005; 24: 1117-1125
        • Farny C.H.
        • Holt R.G.
        • Roy R.A.
        Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.
        Ultrasound Med Biol. 2009; 35: 603-615
        • Fitzgerald P.B.
        • Daskalakis Z.J.
        The effects of repetitive transcranial magnetic stimulation in the treatment of depression.
        Expert Rev Med Devices. 2011; 8: 85-95
        • Fry F.J.
        • Ades H.W.
        • Fry W.J.
        Production of reversible changes in the central nervous system by ultrasound.
        Science. 1958; 127: 83-84
        • Gavrilov L.R.
        • Tsirulnikov E.M.
        • Davies I.A.
        Application of focused ultrasound for the stimulation of neural structures.
        Ultrasound Med Biol. 1996; 22: 179-192
        • Gavrilov L.R.
        • Tsirulnikov E.M.
        Focused ultrasound as a tool to input sensory information to humans.
        Acoust Physics. 2012; 58: 3-27
        • Glimcher P.W.
        • Sparks D.L.
        Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades.
        J Neurophysiol. 1993; 69: 953-964
        • Harvey E.N.
        The effect of high-frequency sound waves on heart muscle and other irritable tissues.
        Am J Physiol. 1929; 91: 284-290
        • Huber D.
        • Petreanu L.
        • Ghitani N.
        • Ranade S.
        • Hromádka T.
        • Mainen Z.
        • Svoboda K.
        Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice.
        Nature. 2008; 451: 61-64
        • Hynynen K.
        The threshold for thermally significant cavitation in dog’s thigh muscle in vivo.
        Ultrasound Med Biol. 1991; 17: 157-169
        • Hynynen K.
        • McDannold N.
        • Clement G.
        • Jolesz F.A.
        • Zadicario E.
        • Killiany R.
        • Moore T.
        • Rosen D.
        Preclinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain: A primate study.
        Eur J Radiology. 2006; 59: 149-156
        • Jagannathan J.
        • Sanghvi N.T.
        • Crum L.A.
        • Yen C.P.
        • Medel R.
        • Dumont A.S.
        • Sheehan J.P.
        • Steiner L.
        • Jolesz F.
        • Kassell N.F.
        High-intensity focused ultrasound surgery of the brain: Part 1–A historical perspective with modern applications.
        Neurosurgery. 2009; 64: 201-210
        • Johns L.D.
        Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.
        J Athl Train. 2002; 37: 293-299
        • Kahn I.
        • Desai M.
        • Knoblich U.
        • Bernstein J.
        • Henninger M.
        • Graybiel A.M.
        • Boyden E.S.
        • Buckner R.L.
        • Moore C.I.
        Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons.
        J Neurosci. 2011; 31: 15086-15091
        • Khraiche M.L.
        • Phillips W.B.
        • Jackson N.
        • Muthuswamy J.
        Ultrasound induced increase in excitability of single neurons.
        Proc IEEE Eng Med Biol Soc. 2008; 2008: 4246-4249
        • Krasovitski B.
        • Frenkel V.
        • Shoham S.
        • Kimmel E.
        Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.
        Proc Natl Acad Sci U S A. 2011; 108: 3258-3263
        • LaLumiere R.T.
        A new technique for controlling the brain: Optogenetics and its potential for use in research and the clinic.
        Brain Stimul. 2011; 4: 1-6
        • Lyons M.K.
        Deep brain stimulation: current and future clinical applications.
        Mayo Clin Proc. 2011; 86: 662-672
        • Martin E.
        • Jeanmonod D.
        • Morel A.
        • Zadicario E.
        • Werner B.
        High-intensity focused ultrasound for noninvasive functional neurosurgery.
        Ann Neurol. 2009; 66: 858-861
        • Marsac L.
        • Chauvet D.
        • Larrat B.
        • Pernot M.
        • Robert B.
        • Fink M.
        • Boch A.L.
        • Aubry J.F.
        • Tanter M.
        MR-guided adaptive focusing of therapeutic ultrasound beams in the human head.
        Med Phys. 2012; 39: 1141-1149
      1. Menz MD, Oralkan O, Guleyupoglu E, Khuri-Yakub P, Baccus S. Precise neural stimulation of the retina using focal ultrasound. Neuroscience meeting planner. San Diego, CA: Society for Neuroscience; program 818.21; 2010; Available at: http://www.sfn.org/am2010/pdf/final_program/final_program_b6.pdf.

        • McDannold N.
        • Clement G.T.
        • Black P.
        • Jolesz F.
        • Hynynen K.
        Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients.
        Neurosurgery. 2010; 66: 323-332
        • Murasugi C.M.
        • Salzman C.D.
        • Newsome W.T.
        Microstimulation in visual area MT: Effects of varying pulse amplitude and frequency.
        J Neurosci. 1993; 13: 1719-1729
        • O’Brien W.D.
        Ultrasound-biophysics mechanisms.
        Prog Biophys Molec Biol. 2007; 93: 212-255
        • Patapoutian A.
        • Peier A.M.
        • Story G.M.
        • Viswanath V.
        Thermo TRP channels and beyond: Mechanisms of temperature sensation.
        Nature Rev Neurosci. 2003; 4: 529-539
        • Pernot M.
        • Aubry J.F.
        • Tanter M.
        • Thomas J.L.
        • Fink M.
        High power transcranial beam steering for ultrasonic brain therapy.
        Phys Med Biol. 2003; 48: 2577-2589
        • Salzman C.D.
        • Britten K.H.
        • Newsome W.T.
        Cortical microstimulation influences perceptual judgements of motion direction.
        Nature. 1990; 6280: 174-177
        • Sponer J.
        Dependence of the cavitation threshold on the ultrasonic frequency.
        Czech J Phys. 1990; 40: 1123-1132
        • Stanford T.R.
        • Freedman E.G.
        • Sparks D.L.
        Site and parameters of microstimulation: Evidence for independent effects on the properties of saccades evoked from the primate superior colliculus.
        J Neurophysiol. 1996; 76: 3360-3381
        • Santos H.M.
        • Lodeiro C.
        • Capelo-Martinez J.L.
        The power of ultrasound.
        in: Capelo-Martinez J.L. Ultrasound in chemistry: Analytical applications. Wiley-VCH Verlag, Weinheim, Germany2009: 1-3
        • ter Haar G.R.
        • Daniels S.
        Evidence for ultrasonically induced cavitation in vivo.
        Phys Med Biol. 1981; 26: 1145-1149
        • ter Haar G.R.
        • Daniels S.
        • Eastaugh K.C.
        • Hill C.R.
        Ultrasonically induced cavitation in vivo.
        Br J Cancer. 1982; 5: 151-155
        • ter Haar G.R.
        • Daniels S.
        • Morton K.
        Evidence for acoustic cavitation in vivo: Thresholds for bubble formation with 0.75-Mhz continuous wave and pulsed beams.
        IEEE Trans Ultrason Ferroelectr Freq Cont. 1986; 33: 162-164
        • Tufail Y.
        • Yoshihiro A.
        • Pati S.
        • Li M.M.
        • Tyler W.J.
        Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound.
        Nat Protoc. 2011; 6: 1453-1470
        • Tufail Y.
        • Matyushov A.
        • Baldwin N.
        • Tauchmann M.L.
        • Georges J.
        • Yoshihiro A.
        • Tillery S.I.
        • Tyler W.J.
        Transcranial pulsed ultrasound stimulates intact brain circuits.
        Neuron. 2010; 66: 681-694
        • Tyler W.J.
        Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis.
        Neuroscientist. 2011; 17: 25-36
        • Tyler W.J.
        • Tufail Y.
        • Finsterwald M.
        • Tauchmann M.L.
        • Olson E.J.
        • Majestic C.
        Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound.
        PLoS One. 2008; 3 (Available at: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511): e3511
        • Wells P.N.T.
        Absorption and dispersion of ultrasound in biological tissue.
        Ultrasound Med Biol. 1975; 1: 369-376
        • Wood R.W.
        • Loomis A.L.
        The physical and biological effects of high frequency sound waves of great intensity.
        Phil Mag. 1927; 4: 417-436
        • Wulff V.J.
        • Fry W.J.
        • Tucker D.
        • Fry F.J.
        • Melton C.
        Effects of ultrasonic vibrations on nerve tissues.
        Proc Soc Exp Biol Med. 1951; 76: 361-366
        • Yoo S.S.
        • Bystritsky A.
        • Lee J.H.
        • Zhang Y.
        • Fischer K.
        • Min B.K.
        • McDannold N.J.
        • Pascual-Leone A.
        • Jolesz F.A.
        Focused ultrasound modulates region-specific brain activity.
        Neuroimage. 2011; 56: 1267-1275