Advertisement

Noninvasive Transcranial Stimulation of Rat Abducens Nerve by Focused Ultrasound

      Abstract

      Nonpharmacologic and nonsurgical transcranial modulation of the nerve function may provide new opportunities in evaluation and treatment of cranial nerve diseases. This study investigates the possibility of using low-intensity transcranial focused ultrasound (FUS) to selectively stimulate the rat abducens nerve located above the base of the skull. FUS (frequencies of 350 kHz and 650 kHz) operating in a pulsed mode was applied to the abducens nerve of Sprague-Dawley rats under stereotactic guidance. The abductive eyeball movement ipsilateral to the side of sonication was observed at 350 kHz, using the 0.36-msec tone burst duration (TBD), 1.5-kHz pulse repetition frequency (PRF), and the overall sonication duration of 200 msec. Histologic and behavioral monitoring showed no signs of disruption in the blood brain barrier (BBB), as well as no damage to the nerves and adjacent brain tissue resulting from the sonication. As a novel functional neuro-modulatory modality, the pulsed application of FUS has potential for diagnostic and therapeutic applications in diseases of the peripheral nervous system.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbott J.G.
        Rationale and derivation of MI and TI–a review.
        Ultrasound Med Biol. 1999; 25: 431-441
        • AIUM Clinical Standards Committee
        How to interpret the ultrasound output display standard for higher acoustic output diagnostic ultrasound devices: Version 2.
        J Ultrasound Med. 2004; 23: 723-726
        • Bachtold M.
        • Rinaldi P.
        • Jones J.
        • Reines F.
        • Price L.
        Focused ultrasound modifications of neural circuit activity in a mammalian brain.
        Ultrasound Med Biol. 1998; 24: 557-565
        • Blom S.
        Trigeminal neuralgia: its treatment with a new anticonvulsant drug (G-32883).
        Lancet. 1962; 1: 839-840
        • Bystritsky A.
        • Korb A.S.
        • Douglas P.K.
        • Cohen M.S.
        • Melega W.P.
        • Mulgaonkar A.P.
        • DeSalles A.
        • Min B.K.
        • Yoo S.S.
        A review of low-intensity focused ultrasound pulsation.
        Brain Stimul. 2011; 4: 125-136
        • Clement G.T.
        • White P.J.
        • King R.L.
        • McDannold N.
        • Hynynen K.
        A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy.
        J Ultrasound Med. 2005; 24: 1117-1125
        • Colucci V.
        • Strichartz G.
        • Jolesz F.
        • Vykhodtseva N.
        • Hynynen K.
        Focused ultrasound effects on nerve action potential in vitro.
        Ultrasound Med Biol. 2009; 35: 1737-1747
        • Coussios C.C.
        • Holland C.K.
        • Shaw G.J.
        Transmission of a large unfocused 120-kHz and 1-MHz ultrasound beam through the human skull.
        J Acoust Soc Am. 2002; 112: 2433
        • Dalecki D.
        Mechanical bioeffects of ultrasound.
        Annual Review of Biomedical Engineering. 2004; 6: 229-248
        • DeGiorgio C.M.
        • Shewmon D.A.
        • Whitehurst T.
        Trigeminal nerve stimulation for epilepsy.
        Neurology. 2003; 61: 421-422
        • Donaldson G.W.
        • Graham J.G.
        Aplastic anaemia following the administration of tegretol.
        Br J Clin Pract. 1965; 19: 699-702
        • Dyer N.H.
        • Hughes D.T.
        • Jenkins G.C.
        Aplastic anaemia after carbamazepine.
        Br Med J. 1966; 1: 108
        • Erpelding T.N.
        • Hollman K.W.
        • O’Donnell M.
        Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
        Ultrasound Med Biol. 2007; 33: 263-269
      1. Food and Drug Administration. Guidance for Industry and FDA Staff-Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Rockville, MD, 2008.

        • Gavrilov L.
        • Tsirulnikov E.
        • Davies I.
        Application of focused ultrasound for the stimulation of neural structures.
        Ultrasound Med Biol. 1996; 22: 179-192
        • Greene E.
        Anatomy of the rat.
        Hafner Pub. Co., New York1968
        • Humayun M.S.
        • de Juan Jr., E.
        • Weiland J.D.
        • Dagnelie G.
        • Katona S.
        • Greenberg R.
        • Suzuki S.
        Pattern electrical stimulation of the human retina.
        Vision Res. 1999; 39: 2569-2576
        • Ishihara Y.
        • Calderon A.
        • Watanabe H.
        • Okamoto K.
        • Suzuki Y.
        • Kuroda K.
        • Suzuki Y.
        A precise and fast temperature mapping using water proton chemical shift.
        Magn Reson Med. 1995; 34: 814-823
        • Kaye E.A.
        • Chen J.
        • Pauly K.B.
        Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy.
        Magn Reson Med. 2011; 65: 738-743
        • Killian J.M.
        • Fromm G.H.
        Carbamazepine in the treatment of neuralgia. Use of side effects.
        Arch Neurol. 1968; 19: 129-136
        • Kinoshita M.
        • McDannold N.
        • Jolesz F.A.
        • Hynynen K.
        Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption.
        Proc Natl Acad Sci U S A. 2006; 103: 11719-11723
        • Kobayashi M.
        • Pascual-Leone A.
        Transcranial magnetic stimulation in neurology.
        Lancet Neurol. 2003; 2: 145-156
        • Lafon C.
        • Zderic V.
        • Noble M.
        • Yuen J.
        • Kaczkowski P.
        • Sapozhnikov O.
        • Chavrier F.
        • Crum L.
        • Vaezy S.
        Gel phantom for use in high-intensity focused ultrasound dosimetry.
        Ultrasound Med Biol. 2005; 31: 1383-1389
        • Martin E.
        • Jeanmonod D.
        • Morel A.
        • Zadicario E.
        • Werner B.
        High-intensity focused ultrasound for noninvasive functional neurosurgery.
        Ann Neurol. 2009; 66: 858-861
        • McDannold N.
        • King R.L.
        • Hynynen K.
        MRI monitoring of heating produced by ultrasound absorption in the skull: In vivo study in pigs.
        Magn Reson Med. 2004; 51: 1061-1065
        • McDannold N.J.
        • Jolesz F.A.
        Magnetic resonance image-guided thermal ablations.
        Top Magn Reson Imaging. 2000; 11: 191-202
        • Min B.-K.
        • Bystritsky A.
        • Jung K.-I.
        • Fischer K.
        • Zhang Y.
        • Maeng L.-S.
        • Park S.I.
        • Chung Y.-A.
        • Jolesz F.A.
        • Yoo S.-S.
        Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity.
        BMC Neurosci. 2011; 12: 23
        • Min B.-K.
        • Yang P.S.
        • Bohlke M.
        • Park S.
        • Vago D.R
        • Maher T.J.
        • Yoo S-S.
        Focused ultrasound modulates the level of cortical neurotransmitters: Potential as a new functional brain mapping technique.
        Int J Imaging Sys Technol. 2011; 21: 232-240
        • Mitri F.G.
        • Greenleaf J.F.
        • Fatemi M.
        Chirp imaging vibro-acoustography for removing the ultrasound standing wave artifact.
        IEEE Trans Med Imaging. 2005; 24: 1249-1255
        • Moonen C.T.
        Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.
        Clin Cancer Res. 2007; 13: 3482-3489
        • O’Brien Jr., W.D.
        Ultrasound-biophysics mechanisms.
        Prog Biophys Mol Biol. 2007; 93: 212-255
        • O’Reilly M.A.
        • Huang Y.
        • Hynynen K.
        The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model.
        Phys Med Biol. 2010; 55: 5251-5267
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        ed 5. Elsevier, San Diego2004
        • Roth B.J.
        • Maccabee P.J.
        • Eberle L.P.
        • Amassian V.E.
        • Hallett M.
        • Cadwell J.
        • Anselmi G.D.
        • Tatarian G.T.
        In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve.
        Electroencephalogr Clin Neurophysiol/Evoked Potentials Section. 1994; 93: 68-74
        • Simmons F.B.
        • Epley J.M.
        • Lummis R.C.
        • Guttman N.
        • Frishkopf L.S.
        • Harmon L.D.
        • Zwicker E.
        Auditory nerve: Electrical stimulation in man.
        Science. 1965; 148: 104-106
        • Tang S.C.
        • Clement G.T.
        Acoustic standing wave suppression using randomized phase-shift-keying excitations.
        J Acoust Soc Am. 2009; 126: 1667-1670
        • Tufail Y.
        • Matyushov A.
        • Baldwin N.
        • Tauchmann M.L.
        • Georges J.
        • Yoshihiro A.
        • Tillery S.I.H.
        • Tyler W.J.
        Transcranial pulsed ultrasound stimulates intact brain circuits.
        Neuron. 2010; 66: 681-694
        • Tyler W.J.
        • Tufail Y.
        • Finsterwald M.
        • Tauchmann M.L.
        • Olson E.J.
        • Majestic C.
        Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound.
        PLoS ONE. 2008; 3: e3511
        • Uthman B.M.
        • Reichl A.M.
        • Dean J.C.
        • Eisenschenk S.
        • Gilmore R.
        • Reid S.
        • Roper S.N.
        • Wilder B.J.
        Effectiveness of vagus nerve stimulation in epilepsy patients: A 12-year observation.
        Neurology. 2004; 63: 1124-1126
        • Wessel K.
        • Kompf D.
        Transcranial magnetic brain stimulation: Lack of oculomotor response.
        Exp Brain Res. 1991; 86: 216-218
        • Wilson-Pauwels L.
        Cranial nerves: Function and dysfunction.
        People’s Medical Publishing House, Shelton, CT2010
        • Yang P.S.
        • Kim H.
        • Lee W.
        • Bohlke M.
        • Park S.
        • Maher T.J.
        • Yoo S.S.
        Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats.
        Neuropsychobiology. 2012; 65: 153-160
        • Yoo S.-S.
        • Bystritsky A.
        • Lee J.-H.
        • Zhang Y.
        • Fischer K.
        • Min B.-K.
        • Mcdannold N.J.
        • Pascual-Leone A.
        • Jolesz F.A.
        Focused ultrasound modulates region-specific brain activity.
        NeuroImage. 2011; 56: 1267-1275