Effects of Acoustic Radiation Force on the Binding Efficiency of BR55, a VEGFR2-Specific Ultrasound Contrast Agent


      This work describes an in vivo study analyzing the effect of acoustic radiation force (ARF) on the binding of BR55 VEGFR2-specific contrast-agent microbubbles in a model of prostatic adenocarcinoma in rat. A commercial ultrasound system was modified by implementing high duty-cycle 3.5-MHz center frequency ARF bursts in a scanning configuration. This enabled comparing the effects of ARF on binding in tumor and healthy tissue effectively in the same field of view. Bubble binding was established by measuring late-phase enhancement in amplitude modulation (AM) contrast-specific imaging mode (4 MHz, 150 kPa) 10 min after agent injection when the unbound bubbles were cleared from the circulation. Optimal experimental conditions, such as agent concentration (0.4 × 108–1.6 × 108 bubbles/kg), acoustic pressure amplitude (26–51 kPa) and duty-cycle (20%–95%) of the ARF bursts, were evaluated in their ability to enhance binding in tumor without significantly increasing binding in healthy tissue. Using the optimal conditions (38 kPa peak-negative pressure, 95% duty cycle), ARF-assisted binding of BR55 improved significantly in tumor (by a factor of 7) at a lower agent dose compared with binding without ARF, and it had an insignificant effect on binding in healthy tissue. Thus, the high binding specificity of BR55 microbubbles for targeting VEGFR2 present at sites of active angiogenesis was confirmed by this study. Therefore, it is believed that based on the results obtained in this work, ultrasound molecular imaging using target-specific contrast-agent microbubbles should preferably be performed in combination with ARF.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Becher H.
        • Burns P.N.
        Handbook of contrast echocardiography: Left ventricular function and myocardial perfusion.
        Springer Verlag, Frankfurt and New York2000
        • Carmeliet P.
        Angiogenesis in life, disease and medicine.
        Nature. 2005; 438: 932-936
        • Dayton P.A.
        • Morgan K.E.
        • Klibanov A.L.
        • Brandenburger G.
        • Nightingale K.R.
        • Ferrara K.W.
        A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1997; 44: 1264-1277
        • Dayton P.A.
        • Klibanov A.
        • Brandenburger G.
        • Ferrara K.
        Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles.
        Ultrasound Med Biol. 1999; 25: 1195-1201
        • Dayton P.A.
        • Morgan K.E.
        • Klibanov A.
        • Brandenburger G.
        • Ferrara K.W.
        Optical and acoustical observations of the effects of ultrasound on contrast agents.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1999; 46: 220-232
        • de Jong N.
        • Emmer M.
        • Van Wamel A.
        • Versluis M.
        Ultrasonic characterization of ultrasound contrast agents.
        Med Biol Eng Comput. 2009; 47: 861-873
        • Doinikov A.A.
        • Zhao S.
        • Dayton P.A.
        Modeling of the acoustic response from contrast agent microbubbles near a rigid wall.
        Ultrasonics. 2009; 49: 195-201
      1. ECMUS safety committee tutorial “Diagnostic ultrasound exposure”. EFSUMB Newsletter 2003, January.

      2. FDA 2008. Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Food and Drug Administration, Centre for Devices and Radiological Health, Rockville, MD, USA.

        • Folkman J.
        J Biol Chem. 1992; 267: 10931-10934
        • Fowlkes J.B.
        • Gardner E.A.
        • Ivey J.A.
        • Carson P.L.
        The role of acoustic radiation force in contrast enhancement techniques using bubble based ultrasound contrast agents.
        J. Acoust Soc Am. 1993; 93: 2348
        • Frinking P.J.A.
        • Bouakaz A.
        • Kirkhorn J.
        • Ten Cate F.J.
        • de Jong N.
        Ultrasound contrast imaging: Current and new potential methods.
        Ultrasound Med Biol. 2000; 26: 965-975
        • Hettiarachchi K.
        • Talu E.
        • Longo M.L.
        • Dayton P.A.
        • Lee A.P.
        On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
        Lab Chip. 2007; 7: 463-468
        • Hicklin D.J.
        • Ellis L.M.
        Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.
        J Clin Oncol. 2005; 23: 1011-1027
        • Hu Y.
        • Zhang D.
        • Zheng H.
        • Gong X.
        Chirp excitation technique to enhance microbubble displacement induced by ultrasound radiation force.
        J Acoust Soc Am. 2009; 125: 1410-1415
        • Johnson K.
        • Cianciolo R.
        • Gessner R.C.
        • Dayton P.A.
        A pilot study to assess markers of renal damage in the rodent kidney after exposure to 7 MHz ultrasound pulse sequences designed to cause microbubble translation and disruption.
        Ultrasound Med Biol. 2012; 38: 168-172
        • Klibanov A.L.
        Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging.
        Med Biol Eng Comput. 2009; 47: 875-882
      3. Kokhuis TJA, Overvelde M, Garbin V, Kooiman K, Naaijkens BA, Juffermans LJM, Versluis M, de Jong N. Detachment of targeted microbubbles under influence of secondary acoustic radiation force. 16th European Symposium Ultrasound Contrast Imaging 2011, Rotterdam, The Netherlands (

        • Leighton T.G.
        The acoustic bubble.
        Academic Press, New York1994
        • Pillai R.
        • Marinelli E.R.
        • Swenson R.E.
        A flexible method for preparation of peptide homo- and heterodimers functionalized with affinity probes, chelating ligands, and latent conjugating groups.
        Biopolymers (Peptide Sci). 2006; 84: 576-585
        • Pochon S.
        • Tardy I.
        • Bussat P.
        • Bettinger T.
        • Brochot J.
        • von Wronski M.
        • Passantino L.
        • Schneider M.
        BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis.
        Invest Radiol. 2010; 45: 89-95
        • Rafter P.
        • Phillips P.
        • Vannan M.A.
        Imaging technologies and techniques.
        Cardiol Clin. 2004; 22: 181-197
        • Rognin N.G.
        • Frinking P.
        • Costa M.
        • Arditi M.
        In vivo perfusion quantification by contrast ultrasound: Validation of the use of linearized video data vs. raw RF data. Beijing, China.
        Proc. IEEE Ultrason Symp. 2008; : 1690-1693
        • Rychak J.J.
        • Klibanov A.L.
        • Hossack J.A.
        Acoustic radiation force enhances targeted delivery of ultrasound contrast agent microbubbles: In vitro verification.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2005; 52: 421-433
        • Rychak J.J.
        • Klibanov A.L.
        • Ley K.F.
        • Hossack J.A.
        Enhanced targeting of ultrasound contrast agents using radiation force.
        Ultrasound Med Biol. 2007; 33: 1132-1139
        • Schneider M.
        Characteristics of SonoVue.
        Echocardiography. 1999; 16: 743-746
        • Schneider M.
        • Anantharam B.
        • Arditi M.
        • Bokor D.
        • Broillet A.
        • Bussat P.
        • Fouillet X.
        • Frinking P.
        • Tardy I.
        • Terrettaz J.
        • Senior R.
        • Tranquart F.
        BR38: A new ultrasound blood pool agent.
        Invest Radiol. 2011; 46: 486-494
        • Shrivastava A.
        • von Wronski M.A.
        • Sato A.K.
        • Dransfield D.T.
        • Sexton D.
        • Bogdan N.
        • Pillai R.
        • Nanjappan P.
        • Song B.
        • Marinelli E.
        • DeOliveira D.
        • Luneau C.
        • Devlin M.
        • Muruganandam A.
        • Abujoub A.
        • Connelly G.
        • Wu Q.L.
        • Conley G.
        • Chang Q.
        • Tweedle M.F.
        • Ladner R.C.
        • Swenson R.E.
        • Nunn A.D.
        A distinct strategy to generate high-affinity peptide binders to receptor tyrosine kinases.
        Protein Eng Des Sel. 2005; 18: 417-424
        • Talu E.
        • Hettiarachchi K.
        • Powell R.L.
        • Lee A.P.
        • Dayton P.A.
        • Longo M.L.
        Maintaining monodispersity in a microbubble population formed by flow-focusing.
        Langmuir. 2008; 24: 1745-1749
        • Tardy I.
        • Pochon S.
        • Theraulaz M.
        • Emmel P.
        • Passantino L.
        • Tranquart F.
        • Schneider M.
        Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55.
        Invest Radiol. 2010; 45: 573-578
        • Tortoli P.
        • Michelassi V.
        • Corsi M.
        • Righi D.
        • Takeuchi Y.
        On the interaction between ultrasound contrast agents during Doppler investigations.
        Ultrasound Med Biol. 2001; 27: 1265-1273
        • Van der Meer S.M.
        • Dollet B.
        • Voormolen M.M.
        • Chin C.T.
        • Bouakaz A.
        • de Jong N.
        • Versluis M.
        • Lohse D.
        Microbubble spectroscopy of ultrasound contrast agents.
        J Acoust Soc Am. 2007; 121: 648-656
        • Zhao S.
        • Borden M.
        • Bloch S.H.
        • Kruse D.
        • Ferrara K.W.
        • Dayton P.A.
        Radiation-force assisted targeting facilitates ultrasonic molecular imaging.
        Mol Imaging. 2004; 3: 135-148