Advertisement
Original Contribution| Volume 35, ISSUE 12, P2055-2068, December 2009

Use of Nakagami Statistics and Empirical Mode Decomposition for Ultrasound Tissue Characterization by a Nonfocused Transducer

      Abstract

      The Nakagami parameter associated with the Nakagami distribution estimated from ultrasonic backscattered signals reflects the scatterer concentration in a tissue. A nonfocused transducer does not allow tissue characterization based on the Nakagami parameter. This paper proposes a new method called the noise-assisted Nakagami parameter based on empirical mode decomposition of noisy backscattered echoes to allow quantification of the scatterer concentration based on data obtained using a nonfocused transducer. To explore the practical feasibility of the proposed method, the current study performed experiments on phantoms and measurements on rat livers in vitro with and without fibrosis induction. The results show that using a nonfocused transducer makes it possible to use the noise-assisted Nakagami parameter to classify phantoms with different scatterer concentrations and different stages of liver fibrosis in rats more accurately than when using techniques based on the echo intensity and the conventional Nakagami parameter. However, the conventional Nakagami parameter and the noise-assisted Nakagami parameter have different meanings: the former represents the statistics of signals backscattered from unresolvable scatterers, whereas the latter is associated with stronger resolvable scatterers or local inhomogeneity caused by scatterer aggregation. (E-mail: [email protected]; [email protected])

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bevan P.D.
        • Sherar M.D.
        B-scan ultrasound imaging of thermal coagulation in bovine liver: Frequency shift attenuation mapping.
        Ultrasound Med. Biol. 2001; 27: 809-817
        • Boashash B.
        Estimating and interpreting the instantaneous frequency of a signal—Part 1: Fundamentals.
        Proc IEEE. 1992; 80: 520-538
        • Burckhardt C.B.
        Speckle in ultrasound B-mode scans.
        IEEE Trans Sonics Ultrason. 1978; SU-25: 1-6
        • Christensen D.A.
        Ultrasonic bioinstrumentation.
        Wiley, New York1988
        • Cloutier G.
        • Daronatand M.
        • Savery D.
        • Garcia D.
        • Durand L.G.
        • Foster F.S.
        Non-Gaussian statistics and temporal variations of the ultrasound signal backscattered by blood at frequencies between 10 and 58 MHz.
        J Acoust Soc Am. 2004; 116: 566-577
        • Dutt V.
        • Greenleaf J.F.
        Ultrasound echo envelope analysis using a homodyned K distribution signal model.
        Ultrason Imag. 1994; 16: 265-287
        • Dumane V.A.
        • Shankar P.M.
        Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2001; 48: 1139-1146
        • Flandrin P.
        • Rilling G.
        • Goncalves P.
        Empirical mode decomposition as a filter bank.
        IEEE Signal Proc Lett. 2004; 11: 112-114
        • George J.
        • Rao K.R.
        • Stenr R.
        • Chandrakasan G.
        Dimethylnitrosamine-induced liver injury in rats: The early deposition of collagen.
        Toxicology. 2001; 156: 129-138
        • Guimond A.
        • Teletin M.
        • Garo E.
        • D'Sa A.
        • Selloum M.
        • Champy M.F.
        • Vonesch J.L.
        • Monassier L.
        Quantitative ultrasonic tissue characterization as a new tool for continuous monitoring of chronic liver remodelling in mice.
        Liver Int. 2007; 27: 854-864
      1. Hampshire JBI, Strohbehn JW, McDaniel MD, Waugh JL, James DH. Probability density of myocardial ultrasonic backscatter. Proceedings of the 14th Annual Northeast Bioengineering Conference 1988;March:305–308.

        • Huang C.C.
        • Wang S.H.
        Statistical variations of ultrasound signals backscattered from flowing blood.
        Ultrasound Med Biol. 2007; 33: 1943-1954
        • Huang N.E.
        • Shen Z.
        • Long S.R.
        • Wu M.C.
        • Shih H.H.
        • Zheng Q.
        • Yen N.C.
        • Tung C.C.
        • Liu H.H.
        The empirical mode decomposition method and the Hilbert spectrum for nonlinear and non-stationary time series analysis.
        Proc Royal Soc London A. 1998; 454: 903-995
        • Huang N.E.
        • Shen Z.
        • Long S.R.
        A new view of nonlinear water waves: The Hilbert spectrum.
        Annu Rev Fluid Mech. 1999; 31: 417-457
        • Karmeshu
        • Agrawal R.
        Study of ultrasonic echo envelope based on Nakagami-inverse Gaussian distribution.
        Ultrasound Med Biol. 2006; 32: 371-376
        • Lu Z.F.
        • Zagzebski J.A.
        • Lee F.T.
        Ultrasound backscatter and attenuation in human liver with diffuse disease.
        Ultrasound Med Biol. 1999; 25: 1047-1054
        • Meziri M.
        • Pereirab W.C.A.
        • Abdelwahabc A.
        • Degottd C.
        • Laugierc P.
        In vitro chronic hepatic disease characterization with a multiparametric ultrasonic approach.
        Ultrasonics. 2005; 43: 305-313
        • Nadarajah S.
        Statistical distributions of potential interest in ultrasound speckle analysis.
        Phys Med Biol. 2007; 52: N213-N227
        • Oosterveld B.J.
        • Thijssen J.M.
        • Verhoef W.A.
        Texture of B-mode echograms: 3-D simulations and experiments of the effects of diffraction and scatter density.
        Ultrason Imag. 1985; 7: 142-160
        • Raju B.I.
        • Srinivasan M.A.
        Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 871-882
        • Rilling G.
        • Flandrin P.
        On the influence of sampling on the empirical mode decomposition.
        ICASSP. 2006; 3: 444-447
        • Rilling G.
        • Flandrin P.
        Sampling effects on the empirical mode decomposition.
        Adv Adaptive Data Anal. 2009; 1: 43-59
        • Schwartz M.
        • Bennett W.R.
        • Stein S.
        Communications systems and techniques.
        McGraw-Hill, New York1966
        • Shankar P.M.
        A model for ultrasonic scattering from tissues based on K-distribution.
        Phys Med Biol. 1995; 40: 1633-1649
        • Shankar P.M.
        A general statistical model for ultrasonic backscattering from tissues.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2000; 47: 727-736
        • Shankar P.M.
        • Dumane V.A.
        • Reid J.M.
        • Genis V.
        • Forsberg F.
        • Piccoli C.W.
        • Goldberg B.B.
        Classification of ultrasonic B-mode images of breast masses using Nakagami distribution.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2001; 48: 569-580
        • Shankar P.M.
        • Dumane V.A.
        • George T.
        • Piccoli C.W.
        • Reid J.M.
        • Forsberg F.
        • Goldberg B.B.
        Classification of breast masses in ultrasonic B scans using Nakagami and K distributions.
        Phys Med Biol. 2003; 48: 2229-2240
        • Shankar P.M.
        A compounding scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2003; 50: 339-343
        • Shankar P.M.
        The use of the compounding probability density function in ultrasonic tissue characterization.
        Phys Med Biol. 2004; 49: 1007-1015
        • Shung K.K.
        • Thieme G.A.
        Ultrasonic scattering in biological tissues.
        CRC Press, Boca Raton1993
        • Suzuki K.
        • Hayashi N.
        • Sasaki Y.
        • Kono M.
        • Kasahara A.
        • Imai Y.
        • Fusamoto H.
        • Kamada T.
        Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound.
        Hepatology. 1993; 17: 1041-1046
        • Tsui P.H.
        • Wang S.H.
        The effect of transducer characteristics on the estimation of Nakagami parameter as a function of scatterer concentration.
        Ultrasound Med Biol. 2004; 30: 1345-1353
        • Tsui P.H.
        • Chang C.C.
        Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound Med.
        Biol. 2007; 33: 608-619
        • Tsui P.H.
        • Huang C.C.
        • Chang C.C.
        • Wang S.H.
        • Shung K.K.
        Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro.
        Phys Med Biol. 2007; 52: 6413-6425
        • Tsui P.H.
        • Yeh C.K.
        • Chang C.C.
        • Chen W.S.
        Performance evaluation of ultrasonic Nakagami image in tissue characterization.
        Ultrason Imag. 2008; 30: 78-94
        • Tsui P.H.
        • Yeh C.K.
        • Chang C.C.
        • Liao Y.Y.
        Classification of breast masses by ultrasonic Nakagami imaging: A feasibility study.
        Phys Med Biol. 2008; 53: 6027-6044
        • Tsui P.H.
        • Chang C.C.
        • Chang C.C.
        • Huang N.E.
        • Ho M.C.
        An adaptive threshold filter for ultrasound signal rejection.
        Ultrasonics. 2008; 49: 413-418
        • Tuthill T.A.
        • Sperry R.H.
        • Parker K.J.
        Deviations from Rayleigh statistics in ultrasonic speckle.
        Ultrason Imag. 1988; 10: 81-89
        • Wachowiak M.P.
        • Smolikova R.
        • Tourassi G.D.
        • Elmaghraby A.S.
        General ultrasound speckle models in determining scatterer density.
        Proc SPIE. 2002; 4687: 285-295
        • Wagner R.F.
        • Insana M.F.
        • Brown D.G.
        Statistical properties of radio-frequency and envelope detected signals with applications to medical ultrasound.
        J Opt Soc Am. 1987; 4: 910-922
        • Wang C.Y.
        • Shung K.K.
        Variation in ultrasonic backscattering from skeletal muscle during passive stretching.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1998; 45: 504-510
        • Wang S.H.
        • Shung K.K.
        An approach for measuring ultrasonic backscattering from biological tissues with focused transducers.
        IEEE Trans Biomed Eng. 1997; 44: 549-554
        • Wang S.H.
        • Tsai F.C.
        Characterization of bony tissues from ultrasonic backscattering using statistical models.
        IEEE Ultrason Symp Proc. 2001; 2: 1205-1208
        • Wang S.H.
        • Tsui P.H.
        Ultrasonic techniques to assess the properties of hard and soft biological tissues.
        Key Eng Material. 2004; 270-273: 2055-2060
        • Weng L.
        • Reid J.M.
        • Shankar P.M.
        • Soetanto K.
        Ultrasound speckle analysis based on the K distribution.
        J Acoust Soc Am. 1991; 89: 2992-2995
        • Yuan Y.W.
        • Shung K.K.
        The effect of focusing on ultrasonic backscatter measurements.
        Ultrason Imag. 1986; 8: 121-130
        • Zagzebski J.A.
        • Chen J.F.
        • Dong F.
        • Wilson T.
        Intervening attenuation affects first-order statistical properties of ultrasound echo signals.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1999; 46: 35-40
        • Zimmer Y.
        • Akselrod S.
        • Tepper R.
        The distribution of the local entropy in ultrasound images.
        Ultrasound Med Biol. 1996; 22: 431-439