Advertisement

Ultrafast Imaging of Ultrasound Contrast Agents

      Abstract

      The disappearance of ultrasound contrast agents after disruption can provide useful information on their environment. However, in vivo acoustical imaging of this transient phenomenon, which has a duration on the order of milliseconds, requires high frame rates that are unattainable by conventional ultrasound scanners. In this article, ultrafast imaging is applied to microbubble tracking using a 128-element linear array and an elastography scanner. Contrast agents flowing in a wall-less tissue phantom are insonified with a high-intensity disruption pulse followed by a series of plane waves emitted at a 5 kHz PRF. A collection of compounded images depicting the evolution of microbubbles is obtained after the echoes are beamformed in silico. The backscattering of the microbubbles appears to increase in the first image after disruption (4 ms) and decrease following an exponential decay in the next hundred milliseconds. This microbubble dynamic depends on the length and amplitude of the high-intensity pulse. Furthermore, confined microbubbles are found to differ significantly from their free-flowing counterparts in their dissolution curves. The high temporal resolution provided by ultrafast imaging could help distinguish targeted microbubbles during molecular imaging. (E-mail: [email protected] )

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bercoff J.
        • Tanter M.
        • Fink M.
        Supersonic shear imaging: A new technique for soft tissue elasticity mapping.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51: 396-409
        • Bercoff J.
        • Tanter M.
        • Chaffai S.
        • Fink M.
        Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography.
        IEEE Ultrason Symp. 2002; 2: 1899-1902
        • Bevan P.D.
        • Karshafian R.
        • Burns P.N.
        The influence of fragmentation on the acoustic response from shrinking bubbles.
        Ultrasound Med Biol. 2008; 34: 1152-1162
        • Bevan P.D.
        • Kashaffian R.
        • Tickner E.G.
        • Burns P.N.
        Quantitative measurement of ultrasound disruption of polymer-shelled microbubbles.
        Ultrasound Med Biol. 2007; 33: 1777-1786
        • Bouakaz A.
        • Frinking P.J.A.
        • de Jong N.
        • Bom N.
        Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles.
        Ultrasound Med Biol. 1999; 25: 1407-1415
        • Bouakaz A.
        • Jong N.D.
        WFUMB safety symposium on echo-contrast agents: Nature and types of ultrasound contrast agents.
        Ultrasound Med Biol. 2007; 33 (197–196)
        • Bouakaz A.
        • Versluis M.
        • Jong N.D.
        High-speed optical observations of contrast agent destruction.
        Ultrasound Med Biol. 2005; 31: 391-399
        • Caskey C.F.
        • Stieger S.M.
        • Qin S.
        • Dayton P.A.
        • Ferrara K.W.
        Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall.
        J Acoust Soc Am. 2007; 122: 1191-1200
        • Chen W.S.
        • Matula T.J.
        • Crum L.A.
        The disappearance of ultrasound contrast bubbles: Observations of bubble dissolution and cavitation nucleation.
        Ultrasound Med Biol. 2002; 28: 793-803
        • Chomas J.E.
        • Dayton P.
        • May D.
        • Ferrara K.
        Threshold of fragmentation for ultrasonic contrast agents.
        J Biomed Opt. 2001; 6: 141-150
        • Christiansen J.P.
        • Lindner J.R.
        Molecular and cellular imaging with targeted contrast ultrasound.
        Proc IEEE. 2005; 43: 809-818
        • Couture O.
        • Sprague M.
        • Cherin E.
        • Burns P.N.
        • Foster F.S.
        Reflection from bound microbubbles at high ultrasound frequencies.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56: 536-545
        • Dayton P.
        • Klibanov A.
        • Brandenburger G.
        • Ferrara K.
        Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles.
        Ultrasound Med Biol. 1999; 25: 1195-1201
        • Dayton P.
        • Rychak J.
        Molecular ultrasound imaging using microbubble contrast agents.
        Frontiers Biosci. 2007; 12: 5124-5142
        • Deffieux T.
        • Gennison J.L.
        • Tanter M.
        • Fink M.
        • Nordez A.
        Ultrafast imaging of in vivo muscle contraction using ultrasound.
        Applied Phys Lett. 2006; 89: 184107
        • Eckersley R.J.
        • Chin C.T.
        • Burns P.N.
        Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power.
        Ultrasound Med Biol. 2005; 31: 213-219
        • Garbin V.
        • Cojoc D.
        • Ferrari E.
        • Di Fabrizio E.
        • Overvelde M.L.J.
        • van der Meer S.M.
        • de Jong N.
        • Lohse D.
        • Versluis M.
        Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging.
        Appl Phys Lett. 2007; 90: 114103
        • de Jong N.D.
        • Frinking P.J.A.
        • Bouakaz A.
        • Ten Cate F.J.
        Detection procedures of ultrasound contrast agents.
        Ultrasonics. 2000; 38: 87-92
        • de Jong N.D.
        • Emmer M.
        • Chin C.
        • Bouakaz A.
        • Mastik F.
        • Lohse D.
        • Versluis M.
        “Compression-only” behavior of phospholipid-coated contrast bubbles.
        Ultrasound Med Biol. 2007; 33: 653-656
        • Masoy S.
        • Standal O.
        • Nasholm P.
        • Johansen T.F.
        SURF imaging: In vivo demonstration of an ultrasound contrast agent detection technique.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2008; 55: 1112-1121
        • Montaldo G.
        • Tanter M.
        • Bercoff J.
        • Benech N.
        • Fink M.
        Coherent plane wave compoundingfor very high frame rate ultrasonography transient elastography.
        IEEE Trans Ultrasoun Ferroelectr Freq Control. 2009; 56: 489-506
        • Muller M.
        • Gennisson J.L.
        • Deffieux T.
        • Tanter M.
        • Fink M.
        Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: Preliminary in vivo feasibility study.
        Ultrasound Med Biol. 2009; 35: 219-229
        • Porter T.R.
        • Xie F.
        Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles demonstration and potential mechanisms.
        Circulation. 1995; 92: 2391-2395
        • Postema M.
        • Bouakaz A.
        • Versluis M.
        • de Jong N.
        Ultrasound-induced gas release from contrast agent microbubbles.
        Ultrasonics. 2005; 52: 1035-1041
        • Postema M.
        • Jong N.D.
        • Schmitz G.
        Shell rupture threshold, fragmentation threshold, blake threshold.
        IEEE Ultrason Symp. 2005; 3: 1708-1711
        • Sandrin L.
        • Tanter M.
        • Catheline S.
        • Fink M.
        Shear modulus imaging with 2-D transient elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 426-435
        • Sarvazyan A.P.
        • Rudenko O.V.
        • Swanson S.D.
        • Fowlkes J.B.
        • Emelianov S.Y.
        Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics.
        Ultrasound Med Biol. 1998; 24: 1419-1436
        • Shattuck D.P.
        • Weinshenker M.D.
        • Smith S.W.
        • von Ramm O.T.
        Explososcan: A parallel processing technique with high speed ultrasound imaging with linear phased arrays.
        J Acoust Soc Am. 1984; 75: 1273-1282
        • Simpson D.H.
        • Chin C.T.
        • Burns P.N.
        Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents.
        IEEE Trans Ultrason Ferroelectr Freq Control. 1999; 46: 372-382
        • Tanter M.
        • Bercoff J.
        • Athanasiou A.
        • Deffieux T.
        • Gennisson J.L.
        • Montaldo G.
        • Muller M.
        • Tardivon A.
        • Fink M.
        Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging.
        Ultrasound Med Biol. 2008; 34: 1373-1386
        • Tanter M.
        • Bercoff J.
        • Sandrin L.
        • Fink M.
        Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2002; 49: 1363-1374
        • Wei K.
        • Jayaweera A.R.
        • Firoozan S.
        • Linka A.
        • Skyba D.M.
        • Kaul S.
        Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion.
        Circulation. 1998; 97: 473-483
        • Wilson S.R.
        • Burns P.N.
        Microbubble contrast for radiological imaging: 2.
        Applications. Ultrasound Q. 2006; 22: 5-13
        • Zhao S.
        • Ferrara K.
        • Dayton P.
        Asymmetric oscillation of adherent targeted ultrasound contrast agents.
        Appl Phys Lett. 2005; 87: 8459