Original contributions| Volume 31, ISSUE 1, P115-119, January 2005

Download started.


Antibacterial effects of extracorporeal shock waves


      Despite considerable knowledge about effects of extracorporeal shock-wave therapy (ESWT) on eukaryotic tissues, only little data are available concerning their effect on prokaryotic microorganisms. The objective of the present study was to determine the bactericidal activity as a function of energy flux density and shock-wave impulse number. Standardised suspensions of Staphylococcus aureus ATCC 25923 were exposed to different impulse numbers of shock waves with an energy flux density (ED) up to 0.96 mJ mm−2 (2 Hz). Subsequently, viable bacteria were quantified by culture and compared with an untreated control. After applying 4000 impulses, a significant bactericidal effect was observed with a threshold ED of 0.59 mJ mm−2 (p < 0 · 05). A threshold impulse number of more than 1000 impulses was necessary to reduce bacterial growth (p < 0 · 05). Further elevation of energy and impulse number exponentially increased bacterial killing. ESWT proved to exert significant antibacterial effect in an energy-dependent manner. Certain types of difficult-to-treat infections could offer new applications for ESWT. (E-mail: [email protected])

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Benito A.
        • Ventoura G.
        • Casadei M.
        • et al.
        Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses.
        Appl Environ Microbiol. 1999; 65: 1564-1569
        • Chaussy C.
        • Brendel W.
        • Schmiedt E.
        Extracorporeally induced destruction of kidney stones by shock waves.
        Lancet. 1980; 2: 1265-1268
        • Crum L.A.
        Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.
        J Urol. 1988; 140: 1587-1590
        • Dahmen G.P.
        • Nam V.C.
        • Meiss L.
        • Deutsche Gesellschaft für Stosswellenlithotripsie
        Extrakorporale Stosswellentherapie (ESWA) zur Behandlung von knochennahen Weichteilschmerzen. Indikation, Technik und vorlaeufige Ergebnisse.
        in: Konsensus Workshop der Deutschen Gesellschaft für Stosswellenlithotripsie. Attempto-Verlag, Tuebingen1993: 143-148
        • Delacretaz G.
        • Rink K.
        • Pittomvils G.
        • et al.
        Importance of the implosion of ESWL-induced cavitation bubbles.
        Ultrasound Med Biol. 1995; 21: 97-103
        • Delhaye M.
        • Vandermeeren A.
        • Baize M.
        • Cremer M.
        Extracorporeal shock-wave lithotripsy of pancreatic calculi.
        Gastroenterology. 1992; 102: 610-620
        • Delius M.
        • Draenert K.
        • Al Diek Y.
        • Draenert Y.
        Biological effects of shock waves.
        Ultrasound Med Biol. 1995; 21: 1219-1225
        • Delius M.
        • Ueberle F.
        • Eisenmenger W.
        Extracorporeal shock waves act by shock wave-gas bubble interaction.
        Ultrasound Med Biol. 1998; 24: 1055-1059
        • Diehl P.
        • Schmitt M.
        • Blumelhuber G.
        • et al.
        Induction of tumor cell death by high hydrostatic pressure as a novel supporting technique in orthopedic surgery.
        Oncol Rep. 2003; 10: 1851-1855
        • Gerdesmeyer L.
        • Maier M.
        • Haake M.
        • Schmitz C.
        Physical-technical principles of extracorporeal shockwave therapy (ESWT).
        Orthopade. 2002; 31: 610-617
        • Gerdesmeyer L.
        • Wagenpfeil S.
        • Haake M.
        • et al.
        Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff.
        JAMA. 2003; 290: 2573-2580
        • Gollwitzer H.
        • Horn C.
        • von Eiff C.
        • Henne M.
        • Gerdesmeyer L.
        Antibacterial effectiveness of high-energetic extracorporeal shock waves.
        Z Orthop Ihre Grenzgeb. 2004; 142: 462-466
        • Ikeda K.
        • Tomita K.
        • Takayama K.
        Application of extracorporeal shock wave on bone.
        J Trauma. 1999; 47: 946-950
        • Iro H.
        • Schneider H.T.
        • Fodra C.
        • et al.
        Shockwave lithotripsy of salivary duct stones.
        Lancet. 1992; 339: 1333-1336
        • Kaulesar Sukul D.M.
        • Johannes E.J.
        • Pierik E.G.
        • van Eijck G.J.
        • Kristelijn M.J.
        The effect of high energy shock waves focused on cortical bone.
        J Surg Res. 1993; 54: 46-51
        • Kerfoot W.W.
        • Beshai A.Z.
        • Carson C.C.
        The effect of isolated high-energy shock wave treatments on subsequent bacterial growth.
        Urol Res. 1992; 20: 183-186
        • Lokhandwalla M.
        • McAteer J.A.
        • Williams Jr, J.C.
        • Sturtevant B.
        Mechanical haemolysis in shock wave lithotripsy (SWL).
        Phys Med Biol. 2001; 46: 1245-1264
        • Perrier-Cornet J.M.
        • Hayert M.
        • Gervais P.
        Yeast cell mortality related to a high-pressure shift.
        J Appl Microbiol. 1999; 87: 1-7
        • Rompe J.D.
        • Hopf C.
        • Kullmer K.
        • Heine J.
        • Burger R.
        Analgesic effect of extracorporeal shock-wave therapy on chronic tennis elbow.
        J Bone Joint Surg. 1996; B-78: 233-237
        • Rompe J.D.
        • Hopf C.
        • Kullmer K.
        • Witzsch U.
        • Nafe B.
        Extracorporeal shockwave therapy of radiohumeral epicondylopathy-An alternative treatment concept.
        Z Orthop Ihre Grenzgeb. 1996; 134: 63-66
        • Sauerbruch T.
        • Delius M.
        • Paumgartner G.
        • et al.
        Fragmentation of gallstones by extracorporeal shock waves.
        N Engl J Med. 1986; 314: 818-822
        • Schaden W.
        Extrakorporale Stosswellentherapie (ESWT) bei Pseudarthrosen und verzoegerter Frakturheilung.
        Trauma Berufskrankh. 2000; 2: S333-S339
        • Schleberger R.
        • Senge T.
        Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL).
        Arch Orthop Trauma Surg. 1992; 111: 224-227
        • Shigehisa T.
        • Ohmori T.
        • Saito A.
        • et al.
        Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products.
        Int J Food Microbiol. 1991; 12: 207-215
        • von Eiff C.
        • Overbeck J.
        • Haupt G.
        • et al.
        Bactericidal effect of extracorporeal shock waves on Staphylococcus aureus.
        J Med Microbiol. 2000; 49: 709-712
        • Wang C.J.
        • Huang H.Y.
        • Pai C.H.
        Shock wave-enhanced neovascularization at the tendon-bone junction.
        J Foot Ankle Surg. 2002; 41: 16-22
        • Wang C.J.
        • Wang F.S.
        • Yang K.D.
        • et al.
        Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits.
        J Orthop Res. 2003; 21: 984-989
        • Wess O.
        • Ueberle F.
        • Duehrssen R.N.
        • et al.
        Working group technical developments —Concensus report.
        in: Chaussy C. Eisenberger F. Jocham D. Wilbert D. High energy shock waves in medicine. Thieme, Stuttgart1997: 59-71
        • Zhu S.
        • Cocks F.H.
        • Preminger G.M.
        • Zhong P.
        The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
        Ultrasound Med Biol. 2002; 28: 661-671