Advertisement

Biological effects of ultrasound: Development of safety guidelines. Part II: General review

      Abstract

      In the 1920s, the availability of piezoelectric materials and electronic devices made it possible to produce ultrasound (US) in water at high amplitudes, so that it could be detected after propagation through large distances. Laboratory experiments with this new mechanical form of radiation showed that it was capable of producing an astonishing variety of physical, chemical and biologic effects. In this review, the early findings on bioeffects are discussed, especially those from experiments done in the first few decades, as well as the concepts employed in explaining them. Some recent findings are discussed also, noting how the old and the new are related. In the first few decades, bioeffects research was motivated partly by curiosity, and partly by the wish to increase the effectiveness and ensure the safety of therapeutic US. Beginning in the 1970s, the motivation has come also from the need for safety guidelines relevant to diagnostic US. Instrumentation was developed for measuring acoustic pressure in the fields of pulsed and focused US employed, and standards were established for specifying the fields of commercial equipment. Critical levels of US quantities were determined from laboratory experiments, together with biophysical analysis, for bioeffects produced by thermal and nonthermal mechanisms. These are the basis for safety advice and guidelines recommended or being considered by national, international, professional and governmental organizations. (E-mail: [email protected])

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Ultrasound in Medicine and Biology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbott J.G.
        Rationale and derivation of MI and TI — a review.
        Ultrasound Med Biol. 1999; 25: 431-441
        • AIUM
        Communication from the AIUM Bioeffects Committee August 1976.
        J Clin Ultrasound. 1976; 5: 2-4
        • AIUM
        Who’s afraid of a hundred milliwatts per square centimeter (100 mW/cm−2, SPTA)?.
        American Institute of Ultrasound in Medicine, Laurel, MD1978
        • AIUM
        Evaluation of research reports.
        American Institute of Ultrasound in Medicine, Laurel MD1982
        • AIUM
        Safety considerations for diagnostic ultrasound.
        American Institute of Ultrasound in Medicine, Laurel, MD1985
        • AIUM
        Acoustical data for diagnostic ultrasound equipment. Manufacturer’s Commendation Panel..
        American Institute of Ultrasound in Medicine, Laurel, MD1985
        • AIUM
        Bioeffects considerations for the safety of diagnostic ultrasound.
        J Ultrasound Med. 1988; 7: S1-S38
        • AIUM
        Evaluation of research reports.
        American Institute of Ultrasound in Medicine, Laurel, MD1991
      1. AIUM. Bioeffects and safety of diagnostic ultrasound. Laurel, MD: American Institute of Ultrasound in Medicine, 1993:96.

      2. AIUM. Medical ultrasound safety. Laurel, MD: American Institute of Ultrasound in Medicine, 1994:iii–vi,1–40

      3. AIUM. Recommended ultrasound terminology. Laurel, MD: American Institute of Ultrasound in Medicine, 199a:125.

      4. AIUM, Carson PL, ed. Effects of nonlinear ultrasound propagation on output display indices. J Ultrasound Med 1999b;18:27–86

        • AIUM
        Mechanical bioeffects from diagnostic ultrasound.
        J Ultrasound Med. 2000; 19: 69-168
      5. AIUM/NEMA. Safety standard for diagnostic ultrasound equipment. AIUM/NEMA Standards Publication/No. UL 1–1981. J Ultrasound Med 1983;2(4, Suppl.):S1–S49

        • AIUM/NEMA
        Acoustic output measurement and labeling standard for diagnostic ultrasound equipment. American Institute of Ultrasound in Medicine, Laurel, MD1992
        • AIUM/NEMA
        Standard for real-time display of thermal and mechanical acoustic output indices on diagnostic ultrasound equipment. American Institute of Ultrasound in Medicine, Laurel, MD1992
        • Anderson T.P.
        • Wakim K.G.
        • Herrick J.F.
        • Bennett W.A.
        • Krusen F.H.
        An experimental study of the effects of ultrasonic energy on the lower part of the spinal cord and peripheral nerves.
        Arch Phys Med. 1951; 32: 71-83
        • Angell-James J.
        New developments in the ultrasonic therapy of Ménière’s disease.
        Ann Roy Coll Surg Eng. 1963; 33: 226-244
        • Angell-James J.
        Ménière’s disease.
        J Laryngol Otol. 1969; 83: 771-785
      6. Angell-James J. The ultrasonic treatment of Meniere’s disease. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:912–915.

        • Angell-James J.
        • Dalton G.A.
        • Bullen M.A.
        • Freundlich H.F.
        • Hopkins J.C.
        The ultrasonic treatment of Ménière’s disease.
        J Laryngol Otol. 1960; 74: 730-757
      7. Apfel RE. Acoustic cavitation. In: Edmonds PD, ed. Ultrasonics in Marton C, ed. Methods of experimental physics. New York: Academic Press, 1981.

        • Apfel R.E
        • Holland C.K.
        Gauging the likelihood of cavitation from short-pulse low-duty-cycle diagnostic ultrasound.
        Ultrasound Med Biol. 1991; 17: 179-185
        • Arslan M.
        Ultrasonic surgery of the labyrinth in patients with Menière’s syndrome.
        Sci Med Ital. 1958; 7: 301-326
        • Arslan M.
        Ultrasonic selective irradiation of the ear windows, as a new treatment of vertigo and tinnitus.
        Acta Otolar. 1968; 65: 224-235
        • Baker N.V.
        Segregation and sedimentation of red blood cells in ultrasonic standing waves.
        Nature. 1972; 239: 398-399
        • Bao S.
        • Thrall B.D.
        • Miller D.L.
        Transfection of a reporter plasmid into cultured cells by sonoporation in vitro.
        Ultrasound Med Biol. 1997; 23: 953-959
        • Barnett S.B.
        Structural and functional changes in the cochlea following ultrasonic irradiation.
        Ultrasound Med Biol. 1980; 6: 25-32
      8. Barnett SB. Ultrasound bioeffects research. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:915–917.

        • Barnett S.B
        • Kossoff G.
        Round window ultrasonic treatment of Menière’s disease.
        Arch Otolryngol. 1977; 103: 124-127
        • Barnett S.B.
        • Kossoff G.
        • Clark G.M.
        Histological changes in the inner ear of sheep following a round window ultrasonic irradiation.
        J Otolaryngol Soc Aust. 1973; 3: 508-512
        • Barnett S.B.
        • Rott H-D.
        • ter Haar G.R.
        • Ziskin M.C.
        • Maeda K.
        The sensitivity of biological tissue to ultrasound.
        Ultrasound Med Biol. 1997; 23: 805-812
        • Barnett S.B.
        • ter Haar G.R.
        • Ziskin M.C.
        • Rott H-D.
        • Duck F.A.
        • Maeda K.
        International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine.
        Ultrasound Med Biol. 2000; 26: 355-366
        • Basauri L.
        • Lele P.P.
        A simple method for production of trackless focal lesions with focused ultrasound.
        J Physiol. 1962; 160: 513-534
        • Bell E.
        The action of ultrasound on the mouse liver.
        J Cell Comp Physiol. 1957; 50: 83-103
      9. Bergman L. Ultrasonics and their scientific and technical applications C.A. Hatfield, Trans. Washington, DC: Bureau of Ships, Navy Dept., Navships 1949;900:167(Original work HS Hatfield, Trans. London: Chapman & Hall, Ltd., from Ultraschall. Berlin: VDI-Verlag, 1938

        • Beyer R.T.
        Radiation pressure in a sound wave.
        Am J Physics. 1950; 18: 25-29
        • Bjerknes V.F.J.
        Fields of force. Columbia University Press, New York1906
        • Blake Jr, F.G.
        The onset of cavitation in liquids. Technical Memorandum No.12, Acoustic Research Laboratory.
        Harvard University, Cambridge, MA1949
        • Blake Jr, F.G.
        Bjerknes forces in stationary sound fields.
        J Acoust Soc Am. 1949; 21: 551
        • Boyle R.W.
        Ultrasonic stationary waves.
        Nature. 1927; 120: 476-477
        • Boyle R.W.
        • Taylor G.B.
        • Froman D.K.
        Cavitation in the track of an ultrasound beam.
        Trans Roy Soc Canada Section III. 1929; 23: 187-201
        • Brandt O.
        • Hiedemann E.
        The aggregation of suspended particles in gases by sonic and supersonic waves.
        Trans Faraday Soc. 1936; 32: 1101-1110
        • Brayman A.A.
        • Miller M.W.
        Bubble cycling and standing waves in ultrasonic cell lysis.
        Ultrasound Med Biol. 1992; 18: 411-420
        • Brayman A.A.
        • Azadniv M.
        • Miller M.W.
        Bubble recycling and ultrasonic cell lysis in a stationary exposure vessel.
        J Acoust Soc Am. 1994; 96: 627-633
        • Brayman A.A.
        • Church C.C.
        • Miller M.W.
        Re-evaluation of the concept that high cell concentrations “protect” cells in vitro from ultrasonically induced lysis.
        Ultrasound Med Biol. 1996; 22: 497-514
        • Brayman A.A.
        • Strickler P.L.
        • Luan H.
        • Miller M.W.
        Hemolysis of 40% hematocrit, Albunex® supplemented human erythrocyte suspensions by intense pulsed ultrasound.
        Ultrasound Med Biol. 1997; 23: 1237-1250
      10. Brendel K. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:917–919.

        • Brümmer F.
        • Brenner J.
        • Bräuner T.
        • Hülser D.F.
        Effect of shock waves on suspended and immobilized L1210 cells.
        Ultrasound Med Biol. 1989; 15: 229-239
        • Burger F.J.
        • Söllner K.
        The action of ultrasonic waves in suspensions.
        Trans Faraday Soc. 1936; 32: 1598-1603
        • Busse L.J.
        • Miller J.G.
        • Yuhas D.E.
        • Mimbs J.W.
        • Weiss A.N.
        • Sobel B.E.
        Phase cancellation effects.
        in: Ultrasound in medicine. Vol. 3.. Plenum Press, New York1977: 1519-1535
      11. Carson PL. Safety guidelines and standards. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:919–922.

        • Carson P.L.
        • Fischella P.
        • Oughton T.V.
        Ultrasonic power and intensities produced by diagnostic ultrasound equipment.
        Ultrasound Med Biol. 1978; 3: 341-350
        • Carson P.L.
        • Rubin J.M.
        • Chiang E.H.
        Fetal depth and ultrasound path lengths through overlying tissues.
        Ultrasound Med Biol. 1989; 15: 629-639
        • Carstensen E.L.
        Acoustic cavitation and the safety of diagnostic ultrasound.
        Ultrasound Med Biol. 1987; 13: 597-606
      12. Carstensen EL. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:922–924.

        • Carstensen E.L.
        • Child S.Z.
        • Law W.K.
        • Horowitz D.R.
        • Miller M.W.
        Cavitation as a mechanism for the biological effects of ultrasound on plant roots.
        J Acoust Soc Am. 1979; 66: 1285-1291
        • Carstensen E.L.
        • Child S.Z.
        • Norton S.
        • Nyborg W.L.
        Ultrasonic heating of the skull.
        J Acoust Soc Am. 1990; 87: 1310-1317
        • Carstensen E.L.
        • Kelly P.
        • Church C.C.
        • Brayman A.A.
        • Child S.Z.
        • Raeman C.H.
        • Schery L.
        Lysis of erythrocytes by exposure to CW ultrasound.
        Ultrasound Med Biol. 1993; 19: 147-165
        • Carstensen E.L.
        • Miller M.W.
        • Linke C.A.
        Biological effects of ultrasound.
        J Biol Phys. 1974; 2: 173-192
        • Carstensen E.L.
        • Schwan H.P.
        Determination of the acoustical properties of blood and its components Reprinted by Dunn and O’Brien 1976.
        J Acoust Soc Am. 1953; 25: 286-289
        • Carstensen E.L.
        • Schwan H.P.
        Acoustic properties of hemoglobin solutions Reprinted by Dunn and O’Brien 1976.
        J Acoust Soc Am. 1959; 31: 305-311
        • Chambers L.A.
        The emission of visible light from cavitating liquids.
        J Chem Phys. 1937; 5: 290-292
        • Chan A.K.
        • Sigelmann R.A.
        • Guy A.W.
        • Lehmann J.F.
        Calculation by the method of finite differences of the temperature distribution in layered tissues.
        IEEE Trans Biomed Eng. 1973; BME-20: 86-90
        • Child E.Z.
        • Carstensen E.L.
        Effects of ultrasound on Drosophila— IV.
        Ultrasound Med Biol. 1982; 8: 311-312
        • Child S.Z.
        • Carstensen E.L.
        • Lam S.K.
        Effects of ultrasound on Drosophila.
        Ultrasound Med Biol. 1981; 7: 167-173
        • Child S.Z.
        • Hartman C.L.
        • Schery L.A.
        • Carstensen E.L.
        Lung damage from exposure to pulsed ultrasound.
        Ultrasound Med Biol. 1990; 16: 817-825
        • Chivers R.C.
        • Parry R.J.
        Ultrasonic velocity and attenuation in mammalian tissues.
        J Acoust Soc Am. 1978; 63: 940-953
        • Church C.C.
        The effects of an elastic solid surface layer on the radial pulsations of gas bubbles.
        J Acoust Soc Am. 1995; 97: 1510-1521
        • Church C.C.
        • Flynn H.G.
        • Miller M.W.
        • Sacks P.G.
        The exposure vessel as a factor in ultrasonically-induced mammalian lysis. II..
        Ultrasound Med Biol. 1982; 8: 299-309
        • Clarke P.R.
        • Hill C.R.
        Physical and chemical aspects of ultrasonic disruption of cells.
        J Acoust Soc Am. 1970; 47: 649-653
        • Coakley W.T.
        • Nyborg W.L.
        Cavitation; dynamics of gas bubbles; applications.
        in: Fry F.J. Ultrasound Its applications in medicine and biology. Elsevier Publishing Co, New York1978: 77-159
        • Coakley W.T.
        • Whitworth G.
        • Grundy M.A.
        • Gould R.K.
        • Allman R.
        Ultrasonic manipulation of particles and cells.
        Bioseparation. 1994; 2: 73
        • Coleman A.J.
        • Saunders J.E.
        A survey of the acoustic output of commercial extracorporeal shockwave lithotriptors.
        Ultrasound Med Biol. 1989; 15: 213-227
        • Coleman A.J.
        • Saunders J.E.
        A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy.
        Ultrasonics. 1993; 31: 75-89
        • Crum L.A.
        Bjerknes forces on bubbles in a stationary sound field.
        J Acoust Soc Am. 1975; 57: 1363-1370
        • Crum L.A.
        Sonoluminesence.
        Phys Today. 1994; 47: 22-29
        • Crum L.A.
        • Hansen G.M.
        Generalized equations forrectified diffusion.
        J Acoust Soc Am. 1982; 72: 1586-1592
        • Crum L.A.
        • Hansen G.M.
        Growth of air bubbles in tissue by rectified diffusion.
        Phys Med Biol. 1982; 27: 413-417
        • Dalecki D.
        • Child S.Z.
        • Raeman C.H.
        • Carstensen E.L.
        Tactile perception of ultrasound.
        J Acoust Soc Am. 1995; 97: 3165-3170
        • Dalecki D.
        • Raeman C.H.
        • Child S.Z.
        • Carstensen E.L.
        Intestinal hemorrhage from exposure to pulsed ultrasound.
        Ultrasound Med Biol. 1995; 21: 1067-1072
        • Dalecki D.
        • Raeman C.H.
        • Child S.Z.
        • Carstensen E.L.
        Effects of pulsed ultrasound on the frog heart. III. The radiation force mechanism.
        Ultrasound Med Biol. 1997; 23: 275-285
        • Dalecki D.
        • Raeman C.H.
        • Child S.Z.
        • Cox C.
        • Francis C.W.
        • Meltzer R.S.
        • Carstensen E.L.
        Hemolysis in vivo from exposure to pulsed ultrasound.
        Ultrasound Med Biol. 1997; 23: 307-313
        • Delius M.
        • Denk R.
        • Berding C.
        • Liebich H-G.
        • Jordan M.
        • Brendel W.
        Biological effects of shock waves.
        Ultrasound Med Biol. 1990; 16: 467-472
        • Delius M.
        • Enders G.
        • Heine G.
        • Stark J.
        • Remberger K.
        • Brendel W.
        Biological effects of shock waves.
        Ultrasound Med Biol. 1987; 13: 61-67
        • Delius M.
        • Hofschneider P.
        • Lauer U.
        • Messmer K.
        Extracorporeal shock waves for gene therapy?.
        Lancet. 1995; 345: 1377
        • Devin Jr, C.
        Survey of thermal, radiation and viscous damping of pulsating air bubbles in water.
        J Acoust Soc Am. 1959; 31: 1654-1667
        • Diederich C.J.
        • Hynynen K.
        Ultrasound technology for hyperthermia.
        Ultrasound Med Biol. 1999; 25: 871-887
        • Dognon A.
        • Biancani E.H.
        Ultrasons et Biologie. Gauthier-Villars, Paris1937
        • Drewniak J.L.
        • Carnes K.I.
        • Dunn F.
        In vitro ultrasonic heating of fetal bone.
        J Acoust Soc Am. 1989; 86: 1254-1258
        • Duck F.A.
        Physical properties of tissue; A comprehensive reference book.
        Academic Press, London1990
        • Dunn F.
        Physical mechanisms of the action of intense ultrasound on tissue.
        Am J Phys Med. 1958; 37: 148-151
        • Dunn F.
        Temperature and amplitude dependence of acoustic absorption in tissue.
        J Acoust Soc Am. 1962; 34: 1545-1547
      13. Dunn F. Early history of the Bioacoustics Research Laboratory (BRL) at the University of Illinois. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:924–926.

        • Dunn F.
        • Edmonds P.D.
        • Fry W.J.
        Absorption and dispersion of ultrasound in biological media.
        in: Schwan H.P. Biological engineering. McGraw-Hill Book Co, New York1969: 205-332
      14. Dunn F, O’Brien WD. Ultrasonic biophysics. Benchmark papers in acoustics. Vol. 7. Stroudsburg, PA: Dowden, Hutchinson and Ross, Inc., 1976.

        • Dyson M.
        • Brookes M.
        Stimulation of bone repair by ultrasound.
        in: Lerski A. Morley P. Ultrasound ’82. Pergamon Press, Elmsford, NY1983: 61-66
        • Dyson M.
        • Pond J.B.
        • Woodward B.
        The induction of red cell stasis in embryos by ultrasound.
        in: Reid J.M. Sikov M.R. Interaction of ultrasound and biological tissues, DHEW Publication (FDA) 73–8008. Food and Drug Administration, Rockville, MD1972: 139-140
        • Dyson M.
        • Pond J.B.
        • Woodward B.
        • Broadbent J.
        The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field.
        Ultrasound Med Biol. 1974; 1: 133-148
        • Dyson M.
        • Woodward B.
        • Pond J.B.
        Flow of red cells stopped by ultrasound.
        Nature (London). 1971; 232: 572-573
        • Eckart C.
        Vortices and streams caused by sound waves.
        Phys Rev. 1948; 73: 68-76
        • Elder S.A.
        Cavitation microstreaming.
        J Acoust Soc Am. 1959; 31: 54-64
        • Eller A.
        • Flynn H.G.
        Rectified diffusion during nonlinear pulsations of cavitation bubbles.
        J Acoust Soc Am. 1965; 37: 493-503
      15. Él’piner IE. Ultrasound; Physical, chemical and biological effects F.L. Sinclair, Trans. New York: Consultants Bureau, 1964 Original Russian text published Moscow: Fizmatgiz, 1963.

        • Embleton T.F.W.
        Mean force on a sphere in a spherical sound field. I. (Theoretical).
        J Acoust Soc Am. 1954; 26: 40-45
        • Etienne J.
        • Ranachowski J.
        Professor Leszek Filipczyński.
        Arch Acoustics. 1994; 19: 423-433
        • FDA
        510(k) guide for measuring and reporting acoustic output of diagnostic ultrasound medical devices. Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD1985
      16. FDA. Diagnostic ultrasound guidance update. Communication from JC Villforth. Rockville, MD: Center for Devices and Radiological Health, Food and Drug Administration, 1987

      17. FDA. Revised 510(k) diagnostic ultrasound guidance for 1993. Communication from FA Andersen. Rockville, MD: Center for Devices and Radiological Health. Food and Drug Administration, 1993

      18. FDA. Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Rockville, MD: Center for Devices and Radiological Health, Food and Drug Administration, 1997

        • Filipczyński L.
        Temperature effect in soft tissue—estimated and measured.
        in: Proceedings of the Second Congress of the Federation of Acoustical Societies of Europe, FASE 78.Vol. 2. Polish Academy of Sciences, Warsaw1978: 23-26
        • Filipczyński L.
        Measurement of the temperature increases generated in soft tissues by ultrasonic diagnostic Doppler equipment.
        Ultrasound Med Biol. 1978; 4: 151-155
        • Foster K.R.
        • Wiederhold M.L.
        Auditory responses in cats produced by pulsed ultrasound.
        J Acoust Soc Am. 1978; 63: 1199-1205
        • Fox F.E.
        • Herzfeld K.F.
        Gas bubbles with organic skin as cavitation nuclei.
        J Acoust Soc Am. 1954; 26: 984-989
        • Flynn H.G.
        Physics of acoustic cavitation in liquids.
        in: Physical acoustics, Part B.Vol. 1. Academic Press, New York1964: 58-172
        • Frenzel H.
        • Schultes H.
        Luminescenz im ultraschallbeschickten Wasser.
        Zeit Phys Chem (B). 1934; 27: 421-424
        • Freundlich H.
        • Söllner K.
        • Rogowski F.
        Einige biologische wirkungen von ultraschallwellen.
        Klin Wochschr. 1932; 11: 1512-1513
        • Frizzell L.A.
        • Lee C.S.
        • Aschenbach P.D.
        • Borrelli M.J.
        • Morimoto R.S.
        • Dunn F.
        Involvement of ultrasonically induced cavitation in the production of hind limb paralysis of the mouse neonate.
        J Acoust Soc Am. 1983; 74: 1062-1065
        • Frizzell L.A.
        Biological effects of acoustic cavitation.
        in: Suslick K.S. Ultrasound Its chemical, physical and biological effects. VCH Publishers Inc, New York1988: 287-303
        • Frizzell L.A.
        • Miller D.L.
        • Nyborg W.L.
        Ultrasonically induced intravascular streaming and thrombus formation adjacent to a micropipette.
        Ultrasound Med Biol. 1986; 12: 217-221
      19. Fry FJ. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:926–927.

        • Fry F.J.
        • Ades H.W.
        • Fry W.J.
        Production of reversible changes in the central nervous system by ultrasound.
        Science. 1958; 127: 83-84
        • Fry F.J.
        • Kossoff G.
        • Eggleton R.C.
        • Dunn F.
        Threshold ultrasonic dosages for structural changes in the mammalian brain.
        J Acoust Soc Am. 1970; 48: 1413-1417
        • Fry W.J.
        Action of ultrasound on nerve tissue — a review.
        J Acoust Soc Am. 1953; 25: 1-5
        • Fry W.J.
        Intense ultrasound in investigations of the central nervous system.
        in: Tobias C.A. Lawrence J.H. Advances in biological and medical physics. Academic Press, New York1958: 281-348
        • Fry W.J.
        • Dunn F.
        Ultrasonic irradiation of the central nervous system at high sound levels.
        J Acoust Soc Am. 1956; 28: 129-131
        • Fry W.J.
        • Fry R.B.
        Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes—theory.
        J Acoust Soc Am. 1954; 26: 294-310
        • Fry W.J.
        • Fry R.B.
        Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes—experiment.
        J Acoust Soc Am. 1954; 26: 311-317
        • Gavrilov L.R.
        Use of focused ultrasound for stimulation of nerve structures.
        Ultrasonics. 1984; 22: 132-138
      20. Gavrilov LR. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:927–930.

        • Gavrilov L.R.
        • Gersuni G.V.
        • Ilyinski O.B.
        • Tsirul’nikov E.M.
        • Shchekanov E.E.
        A study of reception with the use of focused ultrasound. I. Effects on the skin and deep receptor structures in man.
        Brain Res. 1977; 135: 265-277
        • Gavrilov L.R.
        • Pudov V.I.
        • Rozenblyut A.S.
        • Tsirul’nikov E.M.
        • Chepkunov A.V.
        • Shchekanov E.E.
        Application of focused ultrasound for the input of auditory information into the aural labyrinth.
        Sov Phys Acoust. 1977; 23: 318-320
      21. Gershoy A, Miller DL, Nyborg WL. Intercellular gas: Its role insonated plant tissue. In: White D, Barnes R, eds. Ultrasound in medicine. Vol. 2. Proceedings of the 20th Ann Meeting of the Am Institute of Ultrasound in Medicine. New York: Plenum Press, 1976:501–511.

        • Goldman D.E.
        • Hueter T.F.
        Tabular data of the velocity and absorption of high-frequency sound in mammalian tissues Reprinted by Dunn and O’Brien 1976.
        J Acoust Soc Am. 1956; 28: 35-37
        • Goldman D.E.
        • Lepeschkin W.W.
        Injury to living cells in standing sound waves.
        J Cell Comp Physiol. 1952; 40: 255-268
        • Goldman D.E.
        • Ringo G.R.
        Determination of pressure nodes in liquids.
        J Acoust Soc Am. 1949; 21: 270
      22. Goss SA, Cobb JW, Frizzell LA. Effect of beam width and thermocouple size on the measurement of ultrasonic absorption using the thermoelectric technique. IEEE Ultrason Symp Proc 1977;IEEE, New York:206–211.

        • Goss S.A.
        • Johnston R.L.
        • Dunn F.
        Comprehensive compilation of empirical ultrasonic properties of mammalian tissues.
        J Acoust Soc Am. 1978; 64: 423-457
        • Goss S.A.
        • Johnston R.L.
        • Dunn F.
        Compilation of empirical ultrasonic properties of mammalian tissues. II.
        J Acoust Soc Am. 1980; 68: 93-108
        • Grabar P.
        • Rouyer M.
        La désintégration des microbes par les ultrasons.
        Ann Inst Pasteur. 1934; 71: 154-157
        • Gruetzmacher J.
        Piezoelektrischer kristall mit ultraschallkonvergenz.
        Ztschr physik. 1935; 96: 342-349
      23. Harris GR. Early hydrophone work and measurement of output exposure limits at the U.S. Food and Drug Administration. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:930–932.

        • Harvey E.N.
        Biological aspects of ultrasonic waves, a general survey.
        Biol Bull. 1930; 59: 306-325
        • Harvey E.N.
        • Loomis A.L.
        High frequency sound waves of small intensity and their biological effects.
        Nature. 1928; 121: 622-624
        • Harvey E.N.
        • Barnes D.K.
        • McElroy W.D.
        • Whiteley A.H.
        • Pease D.C.
        • Cooper K.W.
        Bubble formation in animals. I. Physical factors.
        J Cell Comp Physiol. 1944; 24: 1-22
        • Harvey E.N.
        • Whiteley A.H.
        • McElroy W.D.
        • Pease D.C.
        • Barnes D.K.
        Bubble formation in animals. II. Gas nuclei and their distribution in blood and tissues.
        J Cell Comp Physiol. 1944; 24: 23-34
      24. Health and Welfare Canada. Safety code—23. Guidelines for the safe use of ultrasound. Part 1. Medical and paramedical applications. 80-EHD-59. Ottawa: Health and Welfare Canada, 1980

        • Henriques Jr, F.C.
        Studies of thermal injury.
        Arch Pathol. 1947; 43: 489-502
        • Herrick J.F.
        Temperatures produced in tissues by ultrasound.
        J Acoust Soc Am. 1953; 25: 12-16
      25. Herrick JF. Pearl chain formation. In: Pattishall EG, Banghart FW, eds. Proceedings of the second tri-service conference on biological effects of microwave energy. 8–10 July 1958. Astia document 1958. Astia document Ad 131 477. University of Virginia, 1958.

        • Hertz G.
        • Mende H.
        Der Schallstrahlungsdruck in Flüssigkeiten.
        Zeits für Physik. 1939; 114: 354-367
        • Hesselberg I.
        Investigations on the effect of ultrasonics on bacteria. The decisive role of cavitation.
        Acta Pathol Microbiol Scand. 1956; 111: 134-135
      26. Hill CR. Acoustic intensity measurements on ultrasonic diagnostic devices. In: Boch J, Ossoinig K, eds. Ultrasonographia Medica: 1st World Congress on Ultrasonic Diagnostics in Medicine, 2. Vienna: Vienna Academy of Medicine, 1971:21–27.

      27. Hill CR. Excursions in ultrasound bioeffects and metrology. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:932–935.

        • Hill C.R.
        • ter Haar G.R.
        Ultrasound.
        in: Suess M.J. Benwell-Morison D.A. Nonionizing radiation protection. 2nd ed. World Health Organization, Geneva1987: 199-299
        • Holmes J.H.
        A history of AIUM.
        Reflections. 1980; 6: 193-212
        • Holtzmark J.
        • Johnsen I.
        • Sikkeland T.
        • Skavlem S.
        Boundary layer flow near a cylindrical obstacle in an oscillating incompressible fluid.
        J Acoust Soc Am. 1954; 26: 26-39
        • Hopwood F.L.
        Ultrasonics.
        Nature. 1931; 128: 748-751
      28. Hrazdira I. My job and my hobby. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:935–937.

        • Hsieh D-Y.
        • Plesset M.S.
        Theory of rectified diffusion of mass into gas bubbles.
        J Acoust Soc Am. 1961; 33: 206-215
        • Hueter T.F.
        Messung der Ultraschallabsorption in tierischen Geweben und ihre Abhängigkeit von der Frequenz Reprinted by Dunn and O’Brien 1976 as Measurement of ultrasonic absorption in animal tissues and its dependence on frequency.
        Naturwiss. 1948; 35
      29. Hueter TF. Foundations and trends in the 1950s. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:937–938.

        • Hueter T.F.
        • Ballantine Jr, H.T.
        • Cotter W.C.
        Production of lesions in the central nervous system with focused ultrasound.
        J Acoust Soc Am. 1956; 28: 192-201
        • Hueter T.F.
        • Bolt R.H.
        Sonics. John Wiley and Sons, New York1955
        • Hug O.
        • Pape R.
        Nachweis der Ultraschallkavitation im Gewebe.
        Strahlentherapie. 1954; 94: 79-99
        • Hughes D.E.
        • Nyborg W.L.
        Cell disruption by ultrasound.
        Science. 1962; 138: 108-114
      30. Ide M. Safety and standardization. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:939–942.

      31. IEC. Requirement for the declaration of acoustic output of medical diagnostic equipment. IEC 61157. Geneva: International Electrotechnical Commission, 1992

        • Jenkins P.
        • Barnes R.A.
        • Coakley W.T.
        Detection of meningitis antigens in buffer and body fluids by ultrasound-enhanced particle agglutination.
        J Immunol Methods. 1997; 205: 191-200
        • Johnson C.H.
        The lethal effects of ultrasonic radiation.
        J Physiol. 1929; 67: 356-359
      32. Kelly E. Ultrasound in biology and medicine. Publication No.3. American Institute of Biological Sciences, Washington DC1957
      33. Kelly E. Ultrasonic energy; biological investigations and medical applications. University of Illinois Press, Urbana, IL1965
      34. Kelly-Fry E. Working with Professor William J. Fry at the University of Illinois and the Interscience Research Institute. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:942–944.

        • Kim H.J.
        • Greenleaf J.F.
        • Kinnick R.R.
        • Bronk J.T.
        • Bolander M.E.
        Ultrasound-mediated transfection of mammalian cells.
        Human Gene Ther. 1996; 7: 1339-1346
        • King L.V.
        On the acoustic radiation pressure on spheres.
        Proc Roy Soc (London). 1934; A147: 212-240
        • Knapp R.T.
        • Hollander A.
        Laboratory investigations of the mechanism of cavitation.
        Trans ASME. 1948; 70: 419-435
        • Koch E.B.
        The process of innovation in medical technology.
        University of Pennsylvania, 1990
        • König W.
        Hydrodynamisch-akustische Untersuchungen.
        Ann Phys Lpz (3). 1891; 42: 352-370
        • König W.
        Hydrodynamisch-akustische Untersuchungen.
        Ann Phys Lpz (3). 1891; 42: 549-563
        • Kornfeld M.
        • Suvorov L.
        On the destructive action of cavitation.
        J Appl Phys. 1944; 15: 495-506
      35. Kossoff G. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:944–946.

        • Kossoff G.
        • Wadsworth J.R.
        • Dudley P.F.
        The round window ultrasonic technique for treatment of Menière’s disease.
        Arch Otolaryng. 1967; 86: 83-90
        • Krejci F.
        Experimentelle Grundlagen einer extralabyrinthären chirurgischen Behandlungsmethode der Ménièreschen Erkankung.
        Practica Otorhinolar. 1952; 14: 18-37
        • Kristiansen T.K.
        • Ryaby J.P.
        • McCabe J.
        • Frey J.J.
        • Roe L.R.
        Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study.
        Bone Joint Surg Am. 1997; 79: 961-973
        • Lauterborn W.
        Akustische kavitation: Ein typische, nichtlineares dynamisches System.
        Acustica. 1991; 75: 145-153
        • Lee C.S.
        • Frizzell L.A.
        Exposure levels for ultrasonic cavitation in the mouse neonate.
        Ultrasound Med Biol. 1988; 14: 735-742
        • Lehmann J.F.
        • de Lateur B.J.
        Therapeutic heat.
        in: Lehmann J.F. Therapeutic heat and cold. 3rd ed. Williams & Wilkins, Baltimore, MD1982
        • Lehmann J.F.
        • Herrick J.F.
        Biologic reactions to cavitation, a consideration for ultrasonic therapy.
        Arch Phys Med Rehab. 1953; 34: 86-98
        • Lehmann J.F.
        • de Lateur B.J.
        • Warren C.G.
        • Stonebridge J.S.
        Heating produced by ultrasound in bone and soft tissue.
        Arch Phys Med Rehabil. 1967; 48: 397-401
        • Leighton T.L.
        The acoustic bubble.
        Academic Press, London1994
        • Lele P.P.
        A simple method for the production of trackless focal lesions with focused ultrasound: Physical factors.
        J Physiol Lond. 1962; 160: 494-512
        • Lele P.P.
        Local hyperthermia by ultrasound for cancer therapy.
        in: Nyborg W.L. Ziskin M.C. Biological effects of ultrasound. Churchill Livingston, New York1985: 135-155
      36. Lele PP. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:946–948.

        • Lerner R.M.
        • Carstensen E.L.
        • Dunn F.
        Frequency dependence of thresholds for ultrasonic production of thermal lesions in tissues.
        J Acoust Soc Am. 1973; 54: 504-506
        • Lizzi F.L.
        • Ostromogilsky M.
        Analytical modeling of ultrasonically induced tissue heating.
        Ultrasound Med Biol. 1987; 13: 607-618
      37. Lizzi FL. Ultrasonic biological effects in ophthalmology. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:948–950.

        • Lizzi F.L.
        • Coleman D.J.
        • Driller J.
        • Franzen L.A.
        • Jakobiec F.A.
        Experimental, ultrasonically induced lesions in the retina, choroid and sclera.
        Invest Ophthalmol. 1978; 17: 350-360
        • Lizzi F.L.
        • Coleman D.J.
        • Driller J.
        • Franzen L.A.
        • Leopold M.
        Effects of pulsed ultrasound on ocular tissue.
        Ultrasound Med Biol. 1981; 7: 245-252
        • Lynn J.G.
        • Putnam T.J.
        Histology of cerebral lesions produced by focused ultrasound.
        Am J Pathol. 1944; 20: 637-643
        • Lynn J.G.
        • Zwemer R.L.
        • Chick A.J.
        • Miller A.E.
        A new method for the generation and use of focused ultrasound in experimental biology.
        J Gen Physiol. 1942; 26: 179-193
      38. Maeda K. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:950–951.

        • Marcus P.W.
        • Carstensen E.L.
        Problems with absorption measurements of inhomogeneous solids.
        J Acoust Soc Am. 1975; 58: 1334-1335
        • Martin C.J.
        • Gemmel H.G.
        • Watmough D.J.
        A study of streaming in plant tissue induced by a Doppler fetal heart detector.
        Ultrasound Med Biol. 1978; 4: 131-138
        • Martin C.J.
        • Pratt B.M.
        • Watmough D.J.
        Observations of ultrasound-induced effects in the fish Xiphophorous maculatus.
        Ultrasound Med Biol. 1983; 9: 177-183
        • Mihran R.T.
        • Barnes F.S.
        • Wachtel H.
        Temporally specific modification of myelinated axon excitability in vitro following a single ultrasound pulse.
        Ultrasound Med Biol. 1990; 16: 297-309
        • Mihran R.T.
        • Lineaweaver S.K.
        • Barnes F.S.
        • Wachtel H.
        Effects of pulsed acoustic and mechanical stimuli on the excitability of isolated neuronal and cardiac cells.
        Appl Occup Environ Hyg. 1996; 11: 271-274
        • Miller D.L.
        Instrument for microscopical observation of the biophysical effects of ultrasound.
        J Acoust Soc Am. 1976; 60: 1203-1212
        • Miller D.L.
        Stable arrays of resonant bubbles in a 1 MHz standing wave acoustic field.
        J Acoust Soc Am. 1977; 62: 12-19
        • Miller D.L.
        The effects of ultrasonic activation of gas bodies in Elodea leaves during continuous and pulsed irradiation at 1 MHz.
        Ultrasound Med Biol. 1977; 3: 221-240
        • Miller D.L.
        A review of the ultrasonic bioeffects of microsonation, gas-body activation and related cavitation-like phenomena.
        Ultrasound Med Biol. 1987; 13: 443-470
        • Miller D.L.
        The influence of hematocrit on hemolysis by ultrasonically activated gas-filled micropores.
        Ultrasound Med Biol. 1988; 14: 293-297
        • Miller D.L.
        • Thomas R.M.
        Heating as a mechanism for ultrasonically induced petechial hemorrhages in mouse intestine.
        Ultrasound Med Biol. 1994; 20: 493-503
        • Miller D.L.
        • Williams A.R.
        Bubble cycling as the explanation of the promotion of ultrasonic cavitation in a rotating tube exposure system.
        Ultrasound Med Biol. 1989; 15: 641-648
        • Miller D.L.
        • Bau S.
        • Gies R.A.
        • Thrall B.D.
        Ultrasonic enhancement of gene transfection in murine melanoma tumors.
        Ultrasound Med Biol. 1999; 25: 1425-1430
        • Miller D.L.
        • Thomas R.M.
        • Buschbom R.L.
        Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro.
        Ultrasound Med Biol. 1995; 21: 841-848
        • Miller M.W.
        In vitro studies.
        in: Nyborg W.L. Ziskin M.C. Biological effects of ultrasound. Churchill Livingston, New York1985: 35-48
      39. Miller MW. Ultrasound? In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:952–953.

        • Minnaert M.
        On musical air-bubbles and sounds of running water.
        Phil Mag. 1933; 16: 235-248
        • Muth E.
        über die Erscheinung der Perlschnurkettenbildung von Emulsionspartikelchen unter Einwirkung eines Wechselfeldes.
        Kolloid Zeitschr. 1927; 41: 97-102
      40. NCRP. Biological effects of ultrasound: Mechanisms and clinical implications. National Council of Radiation Protection and Measurements Report No. 74. Bethesda, MD: NCRP Publications, 1983.

      41. NCRP. Exposure criteria for medical diagnostic ultrasound: I. Criteria based on thermal mechanisms. National Council of Radiation Protection and Measurements Report No. 113. Bethesda, MD: NCRP Publications, 1992.

        • Neppiras E.A.
        Acoustic cavitation.
        Phys Rep. 1980; 61: 159-251
        • Noltingk B.E.
        • Neppiras E.A.
        Cavitation produced by ultrasonics.
        Proc Phys Soc B. 1950; 63: 674-685
      42. Nyborg WL. Acoustic streaming. In: Mason WP, ed. Physical acoustics, Vol. II, Part B. New York: Academic Press, 1965:265-331.

      43. Nyborg WL. Physical mechanisms for biological effects of ultrasound Publication 78-8062. Rockville MD: HEW Publication (FDA), 1978.

        • Nyborg W.L.
        Historical review.
        in: Repacholi M.H. Grandolfo M. Rindi A. Ultrasound. Plenum Publishing, New York1987: 1-12
        • Nyborg W.L.
        Acoustic streaming.
        in: Hamilton M.F. Blackstock D.T. Nonlinear acoustics. Academic Press, San Diego1998: 207-231
        • Nyborg W.L.
        Biological effects of ultrasound; Development of safety guidelines. Part 1.
        Ultrasound Med Biol. 2000; 26: 911-964
      44. Nyborg WL. Ultrasonic obsessions. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000a;26:953–955.

        • Nyborg W.L.
        • Gershoy A.
        • Miller D.L.
        Interaction of ultrasound with simple biophysical systems.
        in: Novak Z. Conference Organizer. Proceedings of Ultrasonics International. IPC Science and Technology Press, Guildford, Surrey, England1977: 19-27
        • Nyborg W.L.
        • Miller D.L.
        • Gershoy A.
        Physical consequences of ultrasound in plant tissues and other bio-systems.
        in: Michaelson S.M. Miller M.W. Fundamental and applied aspects of nonionizing radiation. Plenum Publishing, New York1976: 277-299
        • Parker K.J.
        Ultrasonic attenuation and absorption in liver tissue.
        Ultrasound Med Biol. 1983; 9: 363-369
        • Pennes H.H.
        Analysis of tissue and arterial blood temperatures in the resting human forearm.
        J Appl Physiol. 1948; 1: 93-122
        • Pfirsch R.
        Influence des ultrasons de differentes frequences sur la reduction du nitrate d’argent par les cellules foliares d’ Elodea et de Mnium.
        C Rr Acad Sci (Paris). 1957; 245: 2361-2363
        • Pfirsch M.R.
        Role des méats gazeux dans l’action des ultrasons sur les cellules foliares d’Elodea et de mnium.
        Compte rendu Acad Sci (Paris). 1958; 247: 349-351
        • Pfirsch R.
        Action des ultrasons sur le pouvoir reducteur des cellules foliares d’ Elodea.
        C Rr Acad Sci (Paris). 1959; 248: 450-452
        • Pilla A.A.
        • Mont M.A.
        • Nasser P.R.
        • Khan S.A.
        • Figueiredo M.
        • Kaufman J.J.
        • Siffert R.S.
        Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit.
        J Orthop Trauma. 1990; 4: 246-253
        • Plesset M.S.
        The dynamics of cavitation bubbles.
        J Appl Mech. 1949; 16: 277-282
        • Plesset M.S.
        • Chapman R.B.
        Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary.
        J Fluid Mech. 1971; 47: 283-290
        • Pohl E.E.
        • Rosenfeld E.H.
        • Pohl P.
        • Millner R.
        Effects of ultrasound on agglutination and aggregation of human erythrocytes in vitro.
        Ultrasound Med Biol. 1995; 21: 711-719
        • Pohlman R.
        über die richtende Wirkung des Schallfeldes auf Suspensionen nicht kugelförmiger Teilchen.
        Z Phys. 1937; 107: 497-508
        • Pohlman R.
        über die Absorption des Ultraschalls im menschlichen Gewebe und ihre Abhängigkeit von der Frequenz On the absorption of ultrasound in human tissues and its dependence upon frequency, reprinted by Dunn and O“Brien 1976.
        Physik Z. 1939; 40: 159-161
        • Pohlman R.
        Materialdurchleuchtung mittels schalloptischer Abbildung.
        Z angew Phys. 1948; 1: 181-187
        • Pohlman R.
        Die Ultraschalltherapie. Hans Huber Verlag, Bern, Switzerland1951
        • Pond J.B.
        The role of heat in the production of ultrasonic focal lesions.
        J Acoust Soc Am. 1970; 47: 1607-1611
        • Purnell E.W.
        • Sokollu A.
        • Holasek E.
        The production of focal chorioretinitus by ultrasound.
        Am J Ophthalmol. 1964; 58: 953-957
        • Putterman S.J.
        Sonoluminesence. Sound to light.
        Sci Am. 1995; 272: 46-51
        • Raney W.P.
        • Corelli J.C.
        • Westervelt P.J.
        Acoustic streaming in the vicinity of a cylinder.
        J Acoust Soc Am. 1954; 26: 1006
        • Rayleigh L.
        Pressure developed in a liquid during the collapse of a spherical cavity Collected papers, 6:504–507.
        Phil Mag. 1917; 34: 94-98
      45. Rayleigh L. Theory of sound (reprinted 1945). New York: Dover Publications, 1894.

        • RCOG
        Report of the RCOG working party on routine ultrasound examination in pregnancy.
        The Royal College of Obstetricians and Gynaecologists, London, England1984
      46. Reid JM, Sikov MR, eds. Interaction of ultrasound and biological tissues. Workshop proceedings. DHEW Publication (FDA) 73-8008. Washington, DC: US Government Printing Office, 1972.

        • Repacholi M.H.
        • Grandolfo M.
        • Rindi A.
        Ultrasound. Medical applications, biological effects and hazard potential.
        Plenum Press, New York1987
        • Richards W.T.
        • Loomis A.L.
        The chemical effects of high frequency sound waves. I. A preliminary survey.
        J Am Chem Soc. 1927; 49: 3086-3100
        • Robinson T.C.
        An analysis of lesion development in Plexiglas® and nervous tissue using focused ultrasound (Ph.D. thesis).
        MIT, Cambridge, MA1968
        • Robinson T.C.
        • Lele P.P.
        An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low-megahertz frequencies.
        J Acoust Soc Am. 1972; 51: 1333-1351
        • Rooney J.A.
        Does radiation pressure depend on B/A?.
        J Acoust Soc Am. 1973; 54: 429-430
        • Rooney J.A.
        • Nyborg W.L.
        Acoustic radiation pressure in a traveling plane wave.
        Am J Phys. 1972; 40: 1825-1830
        • Rooney J.R.
        Hemolysis near an ultrasonically pulsating gas bubble.
        Science. 1970; 169: 869-871
        • Rosenberger H.
        über den wirkungsmechanismus der ultraschallbehandlung, insbesondere bei ischias und neuralgien.
        Der Chirurg. 1950; 21: 404-406
        • Rott H-D.
        European Committee for Ultrasound Radiation Safety (“Watchdogs”): tasks and activities.
        J Echographie Med Ultrasons. 1998; 19: 271-273
        • Schlichting H.
        Berechnung ebener periodischer Grenzschichtströmungen.
        Physik Z. 1932; 33: 327-335
        • Schlichting H.
        Boundary layer theory.
        McGraw-Hill, New York1955
        • Schmitt F.O.
        Ultrasonic micromanipulation.
        Protoplasma. 1929; 7: 332-340
        • Schmitt F.O.
        • Johnson C.H.
        • Olson A.R.
        Oxidations promoted by ultrasonic radiation.
        J Am Chem Soc. 1929; 51: 370-375
        • Schoenaors F.
        Contribution à l’etude de l’action des ultrasons sur les hématies.
        Compt Rend Soc Biol. 1948; 142: 1080-1082
        • Schoenaors F.
        Contribution à l’etude de l’action des ultrasons sur les trypanosomes.
        Compt Rend Soc Biol. 1948; 142: 1082-1084
        • Schwan H.P.
        Biophysics of diathermy.
        in: Licht S. Therapeutic heat. Elizabeth Licht, New Haven, CT1958: 55-115
        • Söllner K.
        • Bondy C.
        The mechanism of coagulation by ultrasonic waves.
        Trans Faraday Soc. 1936; 32: 616-623
        • Starritt H.C.
        • Duck F.A.
        • Humphrey V.F.
        An experimental investigation of streaming in pulsed diagnostic ultrasound beams.
        Ultrasound Med Biol. 1989; 15: 363-373
      47. Stewart H.F. Stratmeyer M.E. An overview of ultrasound Theory, measurement, medical applications, and biological effects.. HHS Publication FDA, Rockville, MD1982: 82-8190
        • Suhr D.
        • Brümmer F.
        • Irmer U.
        • Schlachter M.
        • Hülser D.F.
        Reduced cavitation-induced cellular damage by the antioxidative effect of vitamin E.
        Ultrasonics. 1994; 32: 301-307
        • Tata D.B.
        • Dunn F.
        • Tindall D.J.
        Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3.
        Biochem Biophys Res Comm. 1997; 234: 64-67
        • ter Haar G.
        Ultrasonic biophysics.
        in: Hill C.R. Physical principles of medical ultrasonics. Ellis Harwood Limited, Chichester1986: 378-435
        • ter Haar G.
        Ultrasound focal beam surgery.
        Ultrasound Med Biol. 1995; 21: 1089-1100
        • ter Haar G.
        • Daniels S.
        Evidence for ultrasonically induced cavitation in vivo.
        Phys Med Biol. 1981; 26: 1145
      48. ter Haar GR, Hill CR. Ultrasound. In: WHO. Nonionizing radiation protection. Copenhagen: World Health Organization European Office, 1982:199–228.

        • ter Haar G.
        • Daniels S.
        • Eastaugh K.C.
        • Hill C.R.
        Ultrasonically induced cavitation in vivo.
        Br J Cancer. 1982; 45: 151-155
        • ter Haar G.
        • Dyson M.
        • Smith S.P.
        Ultrastructural changes in the mouse uterus brought about by ultrasonic irradiation at therapeutic intensities in standing wave fields.
        Ultrasound Med Biol. 1979; 5: 167-179
        • Thacker J.
        Investigations into genetic and inherited changes produced by ultrasound.
        in: Nyborg W.L. Ziskin M.C. Biological effects of ultrasound. Churchill Livingston, New York1985: 67-76
        • Trenchard P.M.
        Ultrasound-induced light transmission change within platelet suspensions as an indirect measure of platelet morphology.
        Ultrasound Med Biol. 1987; 13: 197-208
        • Tsirul’nikov E.M.
        • Vartanyan I.A.
        • Gersuni G.V.
        • Rosenblyum A.S.
        • Pudov V.I.
        • Gavrilov L.R.
        Use of amplitude-modulated focused ultrasound for diagnosis of hearing disorders.
        Ultrasound Med Biol. 1988; 14: 277-285
      49. US Congress. Public law 94–295. United States Statutes at Large. Vol. 90, part 1. Washington: US Government Printing Office, 1978:539–583.

        • Verral R.E.
        • Sehgal C.M.
        Sonoluminescence.
        in: Suslick K.S. Ultrasound Its chemical, physical and biological effects. VCH Publishers, New York1988: 227-286
        • Wang S-J.
        • Lewallen D.J.
        • Bolander M.E.
        • Chao E.Y.S.
        • Ilstrup D.M.
        • Greenleaf J.F.
        Low intensity ultrasound treatment increases strength in a rat femur fracture model.
        J Orthop Res. 1994; 12: 40-47
        • Wang T.G.
        • Lee C.P.
        Radiation pressure and acoustic levitation.
        in: Hamilton M.F. Blackstock D.T. Nonlinear acoustics. Academic Press, San Diego, CA1998: 177-205
        • Ward M.
        • Wu J.
        • Chiu J-F.
        Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents.
        J Acoust Soc Am. 1999; 105: 2951-2957
        • Warwick R.
        • Pond J.
        Trackless lesions in nervous tissues produced by high intensity focused ultrasound.
        J Anat. 1968; 102: 387-405
        • Wells P.N.T.
        Biomedical ultrasonics. Academic Press, London1977
      50. WFUMB, Kossoff G, Barnett SB, eds. First Symposium on Safety, and Standardization of Ultrasound in Obstetrics. Ultrasound Med Biol 1986;12:viii–xvi, 673–724.

      51. WFUMB, Kossoff G, Nyborg WL, eds. Second World Federation of Ultrasound Med Biol Symposium on Safety, and Standardization in Medical Ultrasound. Ultrasound Med Biol 1989;15:vi–ix, 1–115

      52. WFUMB, Barnett SB, Kossoff G, eds. WFUMB Symposium on Safety and Standardization in Medical Ultrasound. Ultrasound Med Biol 1992;18:v–xix,731–814.

      53. WFUMB, Barnett SB, ed. WFUMB Symposium on Safety of Ultrasound in Medicine. Ultrasound Med Biol 1998;24(Suppl. 1):v–xvi, S1–S58.

      54. WHO. Environmental health criteria 22: Ultrasound. Geneva: World Health Organization, 1982.

        • Williams A.R.
        Ultrasound. Biological effects and potential hazards.
        Academic Press, London1983
        • Williams A.R.
        • Hughes D.E.
        • Nyborg W.L.
        Hemolysis near a transversely oscillating wire.
        Science. 1970; 169: 871-873
        • Williams A.R.
        • Miller D.L.
        • Delius M.
        • Schwarze W.
        Investigation of cavitation in flowing media by lithotriptor shock waves in vitro and in vivo.
        Ultrasound Med Biol. 1989; 15: 53-60
        • Williams Jr, J.C.
        • Stonehill M.A.
        • Colmenares K.
        • Evan A.P.
        • Andreoli S.P.
        • Cleveland R.O.
        • Bailey M.R.
        • Crum L.A.
        • McAteer J.A.
        Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vitro.
        Ultrasound Med Biol. 1999; 25: 473-479
        • Wood R.W.
        • Loomis A.L.
        The physical and biological effects of high-frequency sound-waves of great intensity.
        Phil Mag (Series 7). 1927; 4: 417-436
        • Wulff V.J.
        • Fry W.J.
        • Tucker D.
        • Fry F.J.
        • Melton C.
        Effects of ultrasonic vibrations on nerve tissues.
        Proc Soc Exp Biol Med. 1951; 76: 361-366
        • Yosioka K.
        • Kawasima Y.
        Acoustic radiation pressure on a compressible sphere.
        Acustica. 1955; 5: 167-173
        • Young F.R.
        Cavitation.
        McGraw-Hill, New York1989
        • Yount D.E.
        On the evolution, generation and regeneration of gas cavitation nuclei.
        J Acoust Soc Am. 1979; 65: 1429-1439
      55. Ziskin MC. Personal history. In: Nyborg WL. Biological effects of ultrasound; development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 2000;26:955–956.

        • Ziskin M.C.
        • Michlovitz S.L.
        Therapeutic ultrasound.
        in: Michlovitz S.L. Thermal agents in rehabilitation. E. A. Davis, Philadelphia1986: 141-176